
Plumbing for
the Arduino

Matthew C. Jadud
Christian L. Jacobsen

Adam T. Sampson

Revision 2011-01-24

2

Contents

1 Getting Started 11
1.1 Goals . 11
1.2 Installing the Drivers—or Not 11

1.2.1 You have an old Arduino 12
1.2.2 You use an adapter 13
1.2.3 You have a new Arduino 14

1.3 Testing JEdit . 14
1.3.1 Upload the Firmware 15

2 One Blinkenlight 18
2.1 Goals . 18
2.2 Code . 18

2.2.1 Open JEdit 19
2.2.2 Write your Program 20
2.2.3 Build Your Code 21

2.3 Patterns . 22
2.3.1 The PROCedure Definition 22
2.3.2 A PROCedure Call 24

2.4 Breakage . 25
2.4.1 Programming Strategies 28

2.5 Other Resources 29

3

Contents

3 Speedy Blinkenlight 30
3.1 Goals . 30
3.2 Building the Circuit 30

3.2.1 The Breadboard 33
3.2.2 The Arduino 33
3.2.3 The Resistor 34
3.2.4 The LED 35
3.2.5 Completing the circuit 36

3.3 Code . 37
3.4 Patterns . 37
3.5 Experimenting with Changes 39
3.6 Breakage . 39

3.6.1 Break your circuit 39
3.6.2 Break your program 40

4 Two Blinkenlights 42
4.1 Goals . 42
4.2 Build the circuit 42
4.3 Code . 44
4.4 The PAR pattern 44

4.4.1 The truth about PAR 45
4.4.2 Explorations 47

4.5 Breakage . 48

5 Push the Button 51
5.1 Goals . 51
5.2 The Circuit . 51
5.3 Pictures and Code 54

5.3.1 From pictures to code 55
5.3.2 In summary 58

5.4 Breakage . 59

4

Contents

6 Tick... tick... tick... 60
6.1 Seeing the parts 60
6.2 Exploring “plug-n-play” 63

7 Undressing Toggle 64
7.1 The Circuit . 64
7.2 The Network . 65
7.3 Breaking up is hard to do 65

7.3.1 From pictures to code 66
7.4 What does toggle do? 68
7.5 Pattern: A Pipeline 70
7.6 Explorations and Breakage 72

8 Buttons Everywhere 74
8.1 The Challenge 74
8.2 The Circuit . 75
8.3 Reusing Procedures 76
8.4 Managing complexity 78
8.5 The Code . 80
8.6 Breakage . 80

9 Making things Move: Servos 82
9.1 Goals . 82
9.2 Building the Circuit 83
9.3 Code . 84

10 Acknowledgements 89
10.1 Software . 89

10.1.1 occam-π and Plumbing 90
10.2 Images . 91

5

Contents

11 Book Bugs 93

6

Preface

Embedded programming has always been about dealing with
the real world in a timely manner.

When you push a button on your microwave, it beeps and
updates the display immediately. It doesn’t matter if the mi-
crowave is currently making popcorn or not—it responds in
near real-time to your touch. If you’ve ever tried to achieve
this with your Arduino (or other embedded controller), you
discovered that it is very difficult to make your embedded
project do two things at once—like controlling a motor while
waiting for a button to be pressed. You either found yourself
writing large, complex loops that constantly check everything
about your system, or you found yourself reading about “in-
terrupt vectors,” and wondered if you should have paid more
attention in your high school physics class.

Plumbing, and the language it is written in (occam-π), makes
these problems go away.

7

Contents

Parallelism Yesterday

occam is an old programming

The T414.

language; it was developed in the
early 1980’s for use on the Trans-
puter, a specialized processor de-
veloped by the British company in-
mos. This processor was special
because it was able to switch be-
tween many thousands of paral-
lel processes very, very quickly. It
also had four special “links” that
allowed it to be connected to other
Transputers, instantaneously creating a distributed cluster of
processors. occam made it possible, in just a few lines of
code, to write programs that would run across many proces-
sors in parallel, taking advantage of these networked clusters
of Transputers.

In 2010, this may not seem impressive: for example, ev-
ery computer shipped by Apple Computer has at least two
cores, as is the case with many computer manufacturers to-
day. However, we are talking about parallel processors de-
signed and manufactured nearly 30 years ago. And the lan-
guage, occam, has evolved—it is now called occam-π, and
we have worked hard to make sure it runs on everything from
your Arduino to your desktop computer, regardless of the op-
erating system (Linux, Mac, Windows) you choose to use.

8

Contents

Parallelism Today

Thinking about handling things “in parallel” means handling
them “at the same time.” With only one processor, you can
only pretend to handle two things at once—we call this con-
currency. If you want to control a motor while waiting for a
button to be pressed, or to control 64 LEDs “at the same time,”
you could do it with a loop. The loop would get complex, and
you’d be responsible for managing all of the concurrency in
your code.

Or, you could use occam-π. And on the Arduino, you
could use our library of code, called Plumbing, to make these
tasks much easier. For example, take a look at the code from
Chapter 4: Two Blinkenlights.

1 PAR
2 blink (11, 500)
3 blink (12, 500)

With the right circuit, this code would tell our Arduino to
blink two LEDs in PARallel, one on pin 11, and one on pin
12. The blink command comes from the Plumbing library of
code, and the PAR comes from occam-π. Combined, the lan-
guage and the library of code make it easy to express ideas
about problems that involve two things happening “at the
same time,” or (as we prefer to say), concurrently.

We assume that you, the reader, have little or no program-
ming experience, but are excited to explore our tools with
your trusty Arduino in hand. Please—enjoy.

9

Contents

The Commons

This text, as well as all of the tools you need to explore it,
are free and open. Our text is made available under a Cre-
ative Commons license, our software under the LGPL, and
we have chosen the Arduino (and its many variants) because
of the open nature of that community as well. We encourage
you to begin exploring parallel programming using Plumb-
ing, occam-π, and your Arduino.

http://creativecommons.org/licenses/by-sa/3.0/us/

If you’re a publisher, and are interested in working with us
to produce a print edition of this text, please drop an email to
matt at concurrency dot cc.

Bugs

If you find errors in the text, please pass them on to bookbugs
at concurrency dot cc.

10

http://creativecommons.org/licenses/by-sa/3.0/us/

1 Getting Started

Even if you own an Arduino and have programmed it for
many moons using C++ (and the Wiring libraries), we want
to make sure that you’re “good to go” when you start using
occam-π and the Plumbing libraries.

1.1 Goals

The goals for this chapter are for you to:

1. Install the FTDI drivers for the Arduino.

2. Install our JEdit-based IDE (which will show up as the
Transterpreter).

3. See if things work.

1.2 Installing the Drivers—or Not

This is tricky. Depending on what kind of “Arduino” you
have, you may, or may not, need to install some drivers. This
isn’t special to occam-π or Plumbing; the same is true if you
are programming your Arduino using Wiring.

11

1 Getting Started

Lets look at what might be the case here:

1.2.1 You have an old Arduino

If you have an older Arduino, it might have a little chip that
looks like this:

Figure 1.1: The FTDI chip on the Arduino.

If your Arduino has one of these chips, then you need to
install some drivers to support the use of your Arduino. You
can either use the drivers provided by the Arduino project, or
you can get them directly from FTDI (http://www.ftdichip.
com/Drivers/VCP.htm). You will want the “Virtual COM
Port” drivers for your particular operating system. (These

12

http://www.ftdichip.com/Drivers/VCP.htm
http://www.ftdichip.com/Drivers/VCP.htm

1 Getting Started

drivers are not needed under Linux.)

1.2.2 You use an adapter

You might have an “Arduino” that looks like this:

Figure 1.2: An Arduino without an FTDI chip.

Note, on the left-hand side, the six pins protruding from
the board? If your Arduino requires that you use an FTDI
adapter, then you will also need to install drivers. If you

13

1 Getting Started

aren’t 100% positive, an FTDI adapter tends to look some-
thing like this:

Figure 1.3: The LadyAda FTDI Friend, an FTDI adapter.

1.2.3 You have a new Arduino

If you have an Arduino Uno or an Arduino Mega 2560 (the
newest Arduinos on the block), you do not need to install
anything. You’re good to go!

1.3 Testing JEdit

JEdit is a free and open-source editor written in Java. It runs
on Mac, Linux, and Windows. We added a “plug-in” to this

14

1 Getting Started

project that lets JEdit talk to your Arduino. You can freely
download a version of JEdit from www.concurrency.cc
that has our plug-in pre-configured and ready to go for your
choice of operating system.

Figure 1.4: The JEdit program editor.

1.3.1 Upload the Firmware

Before you can run occam-π programs on your Arduino, you
need to upload some firmware. Firmware is code that lives
on a processor and executes when it turns on. In the case of
occam-π programs, we need to install the Transterpreter on
your Arduino—the Transterpreter is the firmware for occam-
π programs.

15

www.concurrency.cc

1 Getting Started

Figure 1.5: Choose “Upload Firmware” from the occPlug
menu.

Selecting this menu option will pop open a window with a
set of options like the following:

Figure 1.6: Select the correct options and upload the firw-
mare.

First, select which kind of Arduino you have from the drop-
down menu. Then, you need to select your serial port.

• On the Mac, the name of the Arduino will look some-
thing like /dev/tty.usbserial-A9007U6Z.

• On Windows, it will be a COM port; you may have to
type it in.

• On Linux, it should be something like /dev/ttyUSB0.

16

1 Getting Started

Once you’ve done that, you can click “Upload firmware,”
and the Transterpreter will be uploaded to your Arduino. It
will then check to see everything was uploaded correctly; it
should take around 10 seconds. Once it is done, you can click
“Done,” and begin writing occam-π programs for your Ar-
duino.

+ The firmware you upload is just an overgrown
Arduino sketch. If you decide to write an Ar-
duino program using Wiring, it will overwrite
the Plumbing firmware. So, when you switch
back to occam-π, the first thing you will have
to do is (again) upload the firmware.

Put another way, you can freely switch back-and-forth be-
tween programs that use occam-π and C++, but you have to
remember that you need to upload the firmware before an
occam-π program can be executed.

17

2 One Blinkenlight

Because we expect you to be following along actively, we’re
not going to spend several chapters on theory before you get
to do anything fun. Instead, we’re going to get you writing
code and testing it on your Arduino right away. And, we’re
going to start you with the simplest, and possibly most im-
portant, program you can write using Plumbing.

2.1 Goals

The goals for this chapter are for you to:

1. Write your first program using the Plumbing library.

2. Run it on your Arduino.

3. Break your first program, and fix it.

2.2 Code

In most chapters, we would now dive straight into the code
you need to write or the circuit you need to build, and then
discuss the patterns you should be aware of in the program

18

2 One Blinkenlight

you just wrote. (Programs have many patterns to them—
learning to recognize these patterns is an important step in
becoming comfortable with programming in any language.)
In this chapter, we’ll take it slow and go one step at a time.

2.2.1 Open JEdit

JEdit is a free and open-source editor written in Java. It runs
on Mac, Linux, and Windows. We added a “plug-in” to this
project that lets JEdit talk to your Arduino. You can freely
download a version of JEdit from www.concurrency.cc
that has our plug-in pre-configured and ready to go for your
choice of operating system.

Figure 2.1: The JEdit program editor.

19

www.concurrency.cc

2 One Blinkenlight

2.2.2 Write your Program

Once you have JEdit open, you can write your first program.
The first step is to get the built-in LED on your Arduino blinking—
this will tell us that everything works.

1 #INCLUDE "plumbing.module"
2
3 PROC main ()
4 heartbeat ()
5 :

Type the above program into JEdit. Note the first line: the
INCLUDE line brings in all of the code that we call “Plumb-
ing.” We won’t always show this line, but you need it at the
start of every one of your programs.

Note that there are some spaces hidden there. Here’s the
same program, but with the spaces clearly marked:

1 #INCLUDE "plumbing.module"
2
3 PROC main ()
4 heartbeat ()
5 :

Those spaces matter a lot. The most important spaces are
the ones on the left-hand side of each line—the indentation.
If you get indentation wrong in occam-π, you’ll get an error.
We’ll explore some common errors at the end of the chapter.

After copying the code, save it as heartbeat.occ. If you’d
like to call it something else, please feel free to do so. On

20

2 One Blinkenlight

the Mac, you can press COMMAND-S, and under Linux and
Windows, CTRL-S. Or, you can click the little floppy disk in
the toolbar. Regardless of how you do it, save your work of-
ten!

2.2.3 Build Your Code

Your code is human-readable. (You may not feel that way yet,
but it is.) We need to convert it from something you under-
stand to something your Arduino understands. We would
properly call this compiling your program. Go up to the Plu-
gins menu, go down to Plumbing, and select the Start occPlug
option. You’ll get a new floating window that provides a few
critical tools. First, you need to select “Arduino” from the
drop-down menu (it defaults to “Desktop”).

Figure 2.2: Compile your code before uploading.

Once you have the occPlug extension running, you can com-
pile and run your program. When you press the round arrow
on the left, our tools first check to see if your code is grammat-
ically correct, and then transform your code into something
that will run on the Arduino. If you made any mistakes in
typing in your program, this is where you’ll get one or more
seemingly incomprehensible errors. Think of them not as “er-
rors” but instead as “learning opportunities.”

If you code compiled, you’ll see a message that looks some-

21

2 One Blinkenlight

thing like this:

Figure 2.3: Compile your code before uploading.

If you get the “green light,” so to speak, you’re good to
go! Hit the running dude, and your code will be sent to your
Arduino and begin executing.

2.3 Patterns

When you’re learning to program, it is important to see the
patterns that exist in the code. Sometimes these patterns are
strict rules that you cannot violate, or you will encounter an
error. We will also see patterns that represent how program-
mers typically do things. What follows is the first of these
strict rules—which we call syntax—that you will encounter
in occam-π programs.

2.3.1 The PROCedure Definition

The first pattern you see in this program is the definition of
the procedure called main. Figure 2.4 on the following page)
removes the details of the code so we can focus in on that
pattern itself.

22

2 One Blinkenlight

PROC ()

:

body - what the PROC does

PROC name

Figure 2.4: A procedure definition.

You will see a lot of PROCedure definitions while you are
using Plumbing, because they help us keep our code orga-
nized. There are a few things we can say about every PROC
definitions that you will encounter:

• A PROCedure definition always starts with the word PROC.

• PROC is always followed by the name of the procedure;
in our first program, the procedure is called main.

• A set of parentheses follows the name of the PROC; then
we hit return. (We’ll learn where and when to put things
inside those parentheses later!)

• We will call the stuff inside the PROCedure its body.
This is the code that makes up the actions of the PROC
we are writing. In our first program, there is only one
line of code in the body of main.

• The PROC ends with a colon, all by itself on a line. This

23

2 One Blinkenlight

signals that we’re done defining this particular PROC,
and are ready to start writing another.

While it may seem daunting to have all the rules spelled
out that way, we’re trying to be clear and help you see that
programming is not so much a mystery as it is a matter of
following rules. Every program you write will end with a
PROC that out of habit you might call main. That is because
the PROC at the end of your program is the first one that will
be run by your Arduino.

2.3.2 A PROCedure Call

Look again at line 4 of our first program:

1 #INCLUDE "plumbing.module"
2
3 PROC main ()
4 heartbeat ()
5 :

From what we have just learned about PROC definitions,
we can say that the body of the PROC named main is one line
long. That line is a PROCedure call. A procedure call typically
looks like Figure 2.5 on the next page.

A procedure call is a way of saying “someone else wrote a
bunch of great code, and I’d like to use it here, please.” In this
case, we wrote a PROC called heartbeat, and we’re making
it available for you to use. That code blinks the LED on the

24

2 One Blinkenlight

 ()PROC name parameters

Figure 2.5: A procedure call.

Arduino.1 We would say that the PROC called heartbeat
is part of the Plumbing library. Or, if you prefer, when you
are programming using Plumbing, heartbeat is one of the
procedures provided for you to use.

2.4 Breakage

With every new piece of code or pattern, there are a dozen
ways to break it. Because we want you to be empowered ex-
plorers, we’re going to help you break your code at the end
of every chapter. We highly recommend you experiment not
only with writing programs that work, but also with writing
programs that do not work. You should keep a notebook of
all the errors you encounter while learning to program; while
it may seem easy to fix them now, you may become confused
when you decide to tackle a program of your own design,
later. Many who study programming are content for it to
seem magical, instead of tackling it systematically. A detailed

1You will learn how to write everything we show you in the first ten chap-
ters, so you’ll get to see all of the magic soon enough.

25

2 One Blinkenlight

notebook goes a long way towards helping dispel mystery.

Further, it is important to note that we are encouraging you
to explore common errors made by many people learning to
program in all languages. As it happens, we’re pretty com-
fortable programming in occam-π—which is why we know
about these errors. Put simply, these are mistakes we still
make. I guess we’re trying to say that there is no shame in
these kinds of programming errors... and our hope is that, by
exposing you to these errors directly, it will help reduce some
of the frustration that sometimes accompanies learning new
things. Go to it!

26

2 One Blinkenlight

Misspellings
One of the most common errors made by beginning pro-
grammers in any language are typos and misspellings.
What happens if you type PRC instead of PROC? maim
instead of main? hearbeat instead of heartbeat?

Capitalization
What happens if you write proc instead of PROC? Like-
wise, Heartbeat instead of heartbeat?

Forget the colon
What happens when you leave the colon off the end of
a PROC definition? This is a common error.

Forget the parens, I
What happens when you leave one or both of the paren-
theses off the PROC definition?

Forget the parens, II
What happens when you leave one or both of the paren-
theses off the PROC call in the body?

Indentation
What happens if you indent the body of the PROC by
one space instead of two? Three spaces?

27

2 One Blinkenlight

2.4.1 Programming Strategies

Remember, learning to program in any language can be a
frustrating experience. Here are a few tools you can use to
help clear the hurdles you might encounter:

Community
We have a website with more information and mailing
lists you can join; take a look at http://concurrency.
cc/. If you get stuck, join the discussion list and ask a
question. We’re there to help.

Attention to Detail
Spaces matter in Plumbing, and they are invisible. Be
careful about what you do, and begin learning to look
with the eyes of a programmer: start looking for pat-
terns and the invisible parts of your code.

Take Notes
As you discover new kinds of mistakes you’ve made,
take the time to make note of them, as well as your anal-
ysis of how you fixed them. Eventually, you won’t need
to make the notes, because you’ll make fewer mistakes.

Take a Walk
...or a roll, or whatever. You should especially do this if
the weather outside is your particular favorite. Let your
mind wander as you wander the outdoors.

Take a Shower
Or do whatever relaxes you and breaks your routine.
Perhaps you prefer a bubble bath? Either way, don’t
forget your rubber duckie.

28

http://concurrency.cc/
http://concurrency.cc/

2 One Blinkenlight

2.5 Other Resources

There is one last resource
we’d like to recommend.
Studying Programming by
Sally Fincher and the
Computer Science Edu-
cation Research Group at
the University of Kent in
Canterbury, England, is
a wonderful resource. It
was written as a study
guide for someone at-
tempting to learn to pro-
gram. Some of the hints
and strategies we will
be presenting through-
out this text are informed
by that text—but there is
much more there than we
can include here. We
should know—Matt was one of the co-authors of both texts.

While you might consider it a conflict of interest, we’d rather
consider it expert opinion. There are few (if any) other texts
that provide guidance and strategy for the novice program-
mer. Give it a look. And remember, Matt isn’t making any
money on either of these books, so this is just the best resource
recommendation we can make to new programmers.

29

3 Speedy Blinkenlight

By changing just one line of code, you can control the speed
at which the LED on your Arduino blinks.

3.1 Goals

This chapter just takes a small step from Chapter 2.

1. Build our first circuit.

2. See how digital voltages are either HIGH or LOW.

3. Learn about the blink procedure in Plumbing.

4. Learn how to control the behavior of a procedure by
changing its parameters.

3.2 Building the Circuit

We could just blink the built-in LED, but we need to know
how to connect multiple LEDs to the Arduino if we’re going
to work through Chapter 4: Two Blinkenlights, where we’ll
learn to blink both the built-in and external LEDs at the same
time.

30

3 Speedy Blinkenlight

Your Arduino will live at the center of a number of increas-
ingly complex circuits. We call them circuits because they
are a loop that makes an electrical connection from a voltage
source (in this case, pin 13), through one or more electronic
components back to “ground” (typically labeled GND). Our
goal is a circuit that looks like Figure 3.1.

From pin 13 to the LED, through
the resistor, and back to GND.

Figure 3.1: Our target circuit.

31

3 Speedy Blinkenlight

We’ll build the circuit up

A good resource.

one step at a time. What we
won’t be doing is teaching
you electronics—for that, we
recommend you pick up a copy
of Make: Electronics1, or for
a more in-depth treatment,
perhaps a used copy of The
Art of Electronics2 by Horowitz
and Hill. Because this is our
first circuit, we’ll take a bit
more time, but in future chap-
ters, we’ll be assuming that
you have a resource like Make:
Electronics available to you.
This is more a book about programming with Plumbing than
a book about the fundamentals of electronic circuit design.

1See http://oreilly.com/catalog/9780596153755/ for more in-
formation about Make: Electronics.

2See http://frank.harvard.edu/aoe/ for more information about
The Art of Electronics.

32

http://oreilly.com/catalog/9780596153755/
http://frank.harvard.edu/aoe/

3 Speedy Blinkenlight

3.2.1 The Breadboard

The breadboard provides a foundation for building and test-
ing small circuits. Breadboards come in many shapes and
sizes; if you have a small Arduino kit, you might have a bread-
board like that pictured in Figure 3.3. Note that things in a
column (on one side of the gutter) are connected, but things
on opposite sides of the gutter are not.

THE GUTTER

Things that line up this
way on the same side of
the gutter are connected.

Figure 3.3: How a breadboard works.

3.2.2 The Arduino

With the Arduino turned off (unplugged from the USB port),
take a wire and connect it from pin 13 to one of the columns in
the breadboard. Perhaps start with the left-most column, and

33

3 Speedy Blinkenlight

we’ll build our circuit from left-to-right. (See 3.1 on page 31
if you get confused—it’s rather accurate.)

3.2.3 The Resistor

A 470Ω resistor.

If you plug your LED directly into
an electronic device—even one as
small as the Arduino—you might
burn it out. If you manage this,
it will probably flash brightly once
and never light again. Therefore,
we need a resistor to help limit the
flow of current through our circuit
so the LED doesn’t get fried. If you
need a rule of thumb (which is not always correct!), a 1KΩ re-
sistor is typically more than enough to protect your LED.3

Resistors are the little barrel-shaped things with different
colored stripes on them. Those stripes tell you what resis-
tance value they have.4 Plug one end of the 470Ω resistor
(, Yellow Purple Brown Gold) into the same column of
the breadboard as the wire you connected from the Arduino,
and the other into an unused column further to the right.

3If you want something better than a guideline, look up Ohm’s Law on
the Wikipedia: http://en.wikipedia.org/wiki/Ohms_law.

4See http://en.wikipedia.org/wiki/Electronic_color_code
for more information about the color codes on resistors.

34

http://en.wikipedia.org/wiki/Ohms_law
http://en.wikipedia.org/wiki/Electronic_color_code

3 Speedy Blinkenlight

3.2.4 The LED

LEDs are a kind of diode. A diode is a device that only allows
electric current to flow in one direction. Therefore, if you con-
nect an LED up “backwards,” nothing will happen. (This is
true up to a point—enough current will destroy an LED even
in a backwards configuration.)

Figure 3.5: The internals of an LED.

Some people say “the long leg of the LED is the negative
leg.” This is true, but if your LED gets mangled, it becomes
difficult to tell which leg is which. Instead, look at Figure ??
on page ??, and find the “anvil.” The anvil is the larger of the
two bits inside the LED, and it is always the negative side of
the LED, meaning the “post” is always the positive side.5

5See http://en.wikipedia.org/wiki/Led for more information.

35

http://en.wikipedia.org/wiki/Led

3 Speedy Blinkenlight

Plug your LED into the breadboard so that the positive side
is in the same column as your jumper wire from 13, and the
negative side is in a column with one end of your resistor.

3.2.5 Completing the circuit

A schematic of our circuit.

Lastly, to complete the circuit,
connect the negative side of the
resistor to the GND pin on your
Arduino with a jumper wire.
You should now have a com-
plete circuit that looks like Fig-
ure 3.1 on page 31. To the
right is the equivalent circuit di-
agram that you might find in
a text on electronics; you can
see the source of the current
(pin 13), the LED (the trian-
gle with the arrows coming off
of it), the resistor (a squiggly
line), and a connection back to
ground (GND on the Arduino).

Now, you should be able to
plug in the USB cable, and type in the code from this chapter.

36

3 Speedy Blinkenlight

3.3 Code

1 PROC main ()
2 blink (13, 500)
3 :

Figure 3.1: The blink procedure lets you control how
rapidly an LED blinks and which pin the LED is
connected to.

3.4 Patterns

In the previous chapter, we saw the heartbeat procedure.
In this chapter, we are introducing a new procedure called
blink. Unlike heartbeat, blink lets us control both which
LED we are blinking as well as the speed at which the LED
blinks.

On line 2, we can see that a PROCedure called blink is be-
ing called. This is just like heartbeat—the code for that pro-
cedure is provided by the Plumbing environment. Note again
the indentation—like heartbeat (from Chapter 2), blink is
indented by two spaces. However, instead of an empty set of
parentheses (as was the case with heartbeat), there is stuff
in-between them. The numbers (13 and 500) are the param-
eters of the procedure blink.

blink (13, 500)

Multiple parameters are always separated by a comma.

37

3 Speedy Blinkenlight

Parameters are values that we give to procedures that let
them do different things based on the values we provide. For
example, the first parameter to the procedure blink is the
number 13. This tells the Arduino which bit it should be
turning on and off. Technically, we would say that the pin
to which the LED is attached is being driven HIGH and LOW.
As we explore more of the basics of electronics, you’ll come
to understand why we say HIGH and LOW instead of “on” and
“off.”

 ()PROC name parameters

Figure 3.7: Parameters go inside the parentheses.

The second parameter to blink is the amount of time that
we want to go by between when the LED is turned on and off.
You might think that 500 is a rather large amount of time—
until you realize that it is a value in milliseconds. The pre-
fix milli means one thousandth. 1000 milliseconds (or 1000ms)
equals 1 second. Therefore, half of a second is 500ms, and a
tenth of a second is 100ms.

38

3 Speedy Blinkenlight

3.5 Experimenting with Changes

You can experiment with a few things at this point. For exam-
ple, you could connect your LED up to pin 12 instead of 13.
After changing the circuit, you would then need to modify
your code.

1 PROC main ()
2 blink (12, 500)
3 :

Figure 3.2: Blinking an external LED on pin 12.

The first parameter to blink tells the procedure which pin
it should be driving HIGH and LOW. If we connect the LED to
pin 12 on the Arduino, we need to update the procedure call.
Likewise, we can change the rate at which the LED blinks.
Currently we are using the value 500. What happens if you
make it higher? Lower?

3.6 Breakage

There are a number of things that can break in this chapter.

3.6.1 Break your circuit

You’ve completed your first circuit. However, you might have
done something wrong, in which case, nothing will work.

39

3 Speedy Blinkenlight

You can intentionally break a few things without damaging
your Arduino or burning out your LED.

Flip the LED
If you flip the LED around, it won’t light. In fact, it
might burn out. Up to you if you want to test this.

Try another resistor
Try an 10kΩ resistor instead of a 470Ω resistor. You
could try smaller resistors... but again, the LED might
burn out. Up to you. (Trying larger values is safe.)

Wire wiggles
If you wiggle a wire out of place, you’ll break the circuit.
Then, nothing will work.

You can safely do each of these things, and see how your
circuit fails to blink properly.

3.6.2 Break your program

There are quite a few ways you can break the software in this
chapter—even though it is only three lines long!

Wrong pin
If you forget to change the pin number from 13 to 12,
then you’ll blink the wrong LED. Or, for that matter, if
you blink pin 11, nothing will appear to happen at all.

Crazy parameters
Try replacing the number 12 with TWELVE. See what
happens.

40

3 Speedy Blinkenlight

Crazy parameters II
Try replacing the number 12 with 122. See what hap-
pens.

Too many parameters
Try using a parameter list like 13, 12, 500. That is,
your code would look like:

blink (13, 12, 500)

Parameters too big
The parameter for the speed of the LED blink is an integer—
a whole number without any decimal parts, if you pre-
fer. Computers can only keep track of numbers that
are so big (or small). How big can you make the blink
speed?

Blink too fast
What happens if you make the blink speed too small
(e.g. zero)?

Fractional blinking
What happens if you try and blink the LED every 100.5ms?

Remember, keeping track of the mistakes you make helps
you know how to deal with them when you encounter them
in your own programs later.

41

4 Two Blinkenlights

So far, we have not done anything with Plumbing that you
could not do in any other language. In this chapter, we will
show you how you can use Plumbing to blink two LEDs at
different speeds in just four lines of code.

4.1 Goals

1. Blink two LEDs together or separately.

2. Learn about PAR, the occam-π construct for building
PARallel programs.

4.2 Build the circuit

You may have modified things as part of your explorations
in the last chapter. For Chapter 4, you’ll need two LEDs con-
nected to your Arduino—one connected to pin 11 and one
connected to pin 12. The cathode of each LED should be
connected to ground through a resistor with a value between
470Ω and 1kΩ. Figure 4.1 on the next page shows how you
should configure your Arduino.

42

4 Two Blinkenlights

Use the ground rail to connect
all your LEDs to ground.

Figure 4.1: A circuit connecting two LEDs to the Arduino.

In the previous chapter, we used blink to turn one LED on
and off at a rate of our choosing. Now, we don’t want to blink
just one LED, but instead want to blink two. Unlike many
programming languages, occam-π gives us a way of saying
this directly. We can write a program that says “please blink
the LED on pin 11 at the same time as you blink the LED on
pin 12.” There is no other language available for the Arduino
that lets you express this so simply.

43

4 Two Blinkenlights

4.3 Code

1 PROC main ()
2 PAR
3 blink (12, 500)
4 blink (11, 500)
5 :

Figure 4.1: We can blink in PARallel.

4.4 The PAR pattern

In the previous chapters, we’ve written a main procedure
that only did one thing. Many interesting programs need to
do lots of things at the same time. If we want two things to
happen at the same time, we use PAR.

So far, we have seen that a PROC may only contain one pro-
cess, and that is indented by two spaces. To do two things
simultaneously, then we need to use something like a PAR.
The PAR itself is indented two spaces, and then everything
underneath it is indented two more spaces. We can put any
number of additional processes underneath a PAR, and occam-π
will take care of running all of them in parallel. In the code
in Listing 4.1, you can see that we are asking Plumbing to run
two things in parallel, because there are two procedures un-
derneath the PAR. This pattern is illustrated in Figure 4.2 on
the next page.

44

4 Two Blinkenlights

PROC ()
 PAR

:

one process

another process

PROC name

Figure 4.2: Executing two processes in parallel.

As it happens, we are asking Plumbing to run two blink
processes. Our program asks it to blink the LED on pin 12
at the same time as we blink the LED on pin 11. Type in this
new program and upload it to your Arduino; if all goes well,
both LEDs should be blinking in synchrony.

4.4.1 The truth about PAR

We have been saying that when you indent processes under-
neath a PAR that they will happen “at the same time.” This is
what it means when we say two things happen “in parallel.”
However, your Arduino only has one processor. It is typi-
cally the case that a device with only one processor can only
do only do one thing at a time. Despite this, we are clearly
executing a program that blinks two LEDs at the same time!

45

4 Two Blinkenlights

Figure 4.3: Parallel processes are juggled on the Arduino.

This may seem like an odd state of affairs: we wrote a pro-
gram that blinks two LEDs in PARallel, but the Arduino can
only do one thing at a time. While occam-π was originally
designed so you could write programs that run on many pro-
cessors, it can also be made to work just fine on a single pro-
cessor. To make this possible, we wrote a piece of software
called the Transterpreter1 that runs occam-π programs and
provides the illusion of parallelism by juggling all your par-
allel processes around, making sure each one gets a turn.

The illusion of parallelism is called concurrency. This should,
we hope, provide a clue as to why our website’s name is
concurrency.cc!

1http://www.transterpreter.org/

46

concurrency.cc
http://www.transterpreter.org/

4 Two Blinkenlights

4.4.2 Explorations

It is likely that, at this point, you are chomping at the bit to
do much more... you’re now thinking about running motors,
and sensors, and all kinds of things in parallel, doing things
were never knew how to do before. For the moment, we’re
going to continue to explore occam-π and the Plumbing li-
brary one step at a time.

Based on what we’ve done so far, you should be able to do
some additional explorations on your own.

Vary the parameters
Currently, both LEDs are blinking at the exact same rate.
Try changing the rate at which they blink by varying the
second parameter to the blink process.

Add more LEDs
If you have more LEDs, you should be able to wire them
up like your first LED using more pins on the Arduino.
Then, add more blink processes underneath the PAR
that will turn that pin on and off.

And a bit of science...

If you have an oscilloscope, you can do some testing on your
Arduino. How fast, for example, can you blink an LED?
Does blink(13, 1) really turn an LED on and off at a rate
of 1ms? Or, is it slower than that? Record these numbers in
your notebook, and see if you can work out the limit as to
how quickly you can drive an LED on and off when using
Plumbing.

47

4 Two Blinkenlights

4.5 Breakage

There are a lot of neat ways to break the code in this chapter.

Indentation of PAR
What happens if you fail to indent PAR, but indent all
of the blink procedures? We make this mistake in our
code all the time.

Lowercase PAR
What happens if you make par all lowercase? What if
you only capitalize the P?

Indentation of blink
Try indenting each blink process four spaces instead
of two. What happens?

Multiple blinks on one pin
Modify your program so that two of your blink pro-
cesses refer to the same pin number. (Note this breaks
after you upload your program, not before!)

Replace one blink with a heartbeat
Modify your program so the PAR looks like this:

2 PAR
3 heartbeat ()
4 blink (11, 500)

What happens? Does this break anything? What if you
blink pin 13 instead of 11?

Two heartbeat processes
What happens if you run two heartbeat processes in

48

4 Two Blinkenlights

parallel?

49

Waiting for the World

Waiting.

At this point, we have
learned a few things about
both electronics and pro-
gramming. Learning that
we can write code that
expresses ideas regard-
ing parallelism with PAR
is, we think, a fundamen-
tal and world-changing
concept for many pro-
grammers. If it felt “nat-
ural,” that’s a good thing.

In terms of electronics,
we learned how to con-
nect an LED to our Arduino. In terms of programming, we
learned some of the basics of the syntax of occam-π. Next,
we’re going to learn a bit about waiting and signaling. Like
everything else about Plumbing, we’ll do this in PARallel—
one process will be responsible for signaling that something
has changed (a button is pressed, for example), while another
waits to see what has happened.

50

5 Push the Button

Writing programs that control lights and motors is fun, but
to build really interesting creations we need to be able to re-
spond to events in the world. In the next few chapters, we’ll
learn how to respond to events that take place in the world
around us.

5.1 Goals

Connect a button to the Arduino and use it to turn an LED on
and off.

5.2 The Circuit

For this circuit, we’ll add a button to the Arduino that lets us
turn an LED on and off. To do this, we’ll need to see how to
attach a button to the Arduino.

You will need:

1. Your Arduino

2. A button

51

5 Push the Button

3. A 10kΩ resistor

4. Some jumper wire

5. An LED and a 470Ω resistor

A picture of what you’re going to build (and the circuit di-
agram) can be found in Figure 5.1.

Figure 5.1: Connecting a button to the Arduino.

The newest and most interesting part of this circuit is the
addition of the button. One leg of the button will be con-
nected to the +5V pin on the Arduino. The opposite leg will
be connected to ground through a 10kΩ resistor (, Brown
Black Orange Gold). From the same column as the resistor we
will connect a wire to pin 2 on the Arduino; we will use pin
2 to detect whether the button has been pressed.

52

5 Push the Button

Getting this circuit wrong could have some unpleasant con-
sequences for your Arduino. Remember, there are plenty of
texts that will teach you more about electronics than this one.
That said, you should know why that 10kΩ resistor is so im-
portant. If you left it out, pushing the button would be equiv-
alent to connecting +5V directly to pin 2. Why is this bad?
The only resistance between the voltage source and pin 2
would be the resistance of the wire; it turns out that this is
a very small number. If we look at Ohm’s Law1, we see why
this is bad.

Voltage = Current x Resistance

If the resistance is very small, and the voltage is constant
(+5V), then the current must be big. Resistors limit the cur-
rent flow in a circuit; without it, we would sink more current
into pin 2 than the Arduino can handle, frying our processor.
By including the resistor—specifically, a pretty big one—the
current drops a great deal, and pressing the button does not
mean death for pin 2.

1FIXME Wikipedia link

53

5 Push the Button

5.3 Pictures and Code

Programming is an incredibly visual activity. If you observe
two experienced programmers discussing a programming prob-
lem, you’ll discover that they make heavy use of diagrams in
their conversation. When we’re working with occam-π, we
also make heavy use of diagrams. This is especially nice be-
cause we can translate those diagrams directly into code.

button.press pin.toggle
s

14 13, LOW
SIGNAL

Figure 5.2: A communicating two-process network.

We call this a process network. Each large box represents
a process, which is a piece of code that is churns away inde-
pendently of every other process. We use small, gray boxes
to indicate parameters that adjust the alter the behavior of the
process they are attached to. So, in Figure 5.2, we would say
that button.press has one parameter, which is 2.

The arrow between the two processes is a CHANnel. Specif-
ically, it is a communications channel—a wire—that connects
one process to another. When we look at Figure 5.2, we can
tell that the process button.press communicates over a
channel called swith a process called pin.toggle. We know
that pin.toggle does not talk with button.press, simply
because the arrow tells us which way the communications
take place.

54

5 Push the Button

5.3.1 From pictures to code

We can, by following a few simple rules, convert the diagram
on page 54 into code. All the information we need to write a
valid occam-π program is contained in the process network
diagram. It is a lot more fun to design programs when you
can do it visually in a sketchbook as opposed to in front of a
screen.

First, we see there are two processes. We can write down
their names.

1 button.press ()
2 pin.toggle ()

Next, we know that both processes have parameters asso-
ciated with them (the gray boxes). We’re going to need to
include those parameters in our code.

1 button.press (2)
2 pin.toggle (12, LOW)

Because there is an arrow connecting these two processes,
we’re going to need a CHANnel to communicate over. But
here’s the trick: all communications must happen in PARallel.
Why? Can you have a phone conversation with someone
where you speak and then they listen? Or, do they have to
be listening at the same time as you are speaking? See.

Communications must happen in PARallel.

55

5 Push the Button

To run our two processes in parallel, we put them under
a PAR. Remember that everything underneath a PAR gets in-
dented by two spaces!

1 PAR
2 button.press (2)
3 pin.toggle (12, LOW)

We’re only missing one thing at this point: the CHANnel. We
have to declare the channel outside the PAR. What this means
is that we have to tell occam-π that we want a communica-
tions channel (we’ll call it s). Further, we have to tell occam-π
what kind of information it will carry. In this case, we want it
to carry information of type SIGNAL.

The declaration looks like this:

1 CHAN SIGNAL s:
2 PAR
3 button.press (2)
4 pin.toggle (12, LOW)

By placing the declaration before the PAR, it indicates that
the processes that are running in parallel may, if they wish,
use the channel s to send a SIGNAL. Now we have just one
step left: we have to give one end of the channel to each of
the two processes in the PAR.

56

5 Push the Button

A channel is a lot like soup cans on string: one person talks,
and the other listens. Unlike soup cans on string, you can’t
take turns talking and listening at both ends: there’s just one
talking end, and just one listening end, and that’s it.

!
sending

?
receiving

The talking (or sending)
end of a channel is marked
with a !. The exclama-
tion point (or bang, from
British English) tells occam-
π which end of the channel
is sending information. It’s
as if that end of the channel
is shouting: “Hey! Hey you!
I’ve got a SIGNAL for you!”

The listening (or receiv-
ing) end of a channel is
marked with a ?. The
question mark (or eh?, from
Canadian English) tells occam-
π which end of the chan-
nel is receiving information.
It’s as if that end of the of
the channel is waiting for
instructions: “Eh? Come
again? What did you say?”

57

5 Push the Button

Lastly, wrap your code in a PROCedure called main, and
indent everything another two spaces. (We don’t get that step
from the diagram.) When you’re done, your program should
look like this:

1 PROC main ()
2 CHAN SIGNAL s:
3 PAR
4 button.press (2, s!)
5 pin.toggle (13, LOW , s?)
6 :

Figure 5.1: Using a button to toggle an LED on and off.

5.3.2 In summary

To summarize what we learned in this chapter:

• Each box in the diagram represents a PROCedure. Be-
cause there are two boxes in the diagram, we can expect
to find a PAR in our code with two processes indented
underneath it.

• The two processes are connected by a single CHANnel. A
channel carries information in one direction only, from
one process to another. In this chapter, the channel’s
name was s.

• Each process may take some parameters; in this chapter,
the process called button.press takes a pin number;
the process pin.toggle takes both a pin number as
well as whether it should start out LOW or HIGH.

58

5 Push the Button

5.4 Breakage

There are lots of ways to break the code in this chapter, as
usual.

Forget the colon
At the end of the CHANnel declaration, remove the colon.
What happens? This is a common error made by many.

Indent the PAR
What happens if you indent the PAR two spaces under
the CHAN? We suspect this makes Plumbing unhappy.
This is rather common as errors go as well.

Swap ! and ?
Try switching the location of the ! and ?.

Leave out the ! and ?
Try it. As it happens, this isn’t an error. Perhaps it
should be?

Forget the SIGNAL
When we write CHAN SIGNAL s, we are telling Plumb-
ing that the channel carries information of the type SIGNAL
over the channel s and nothing else. What happens if
you delete the word SIGNAL?

Forget the s
When we write CHAN SIGNAL s, we are telling Plumb-
ing that the channel is named s. What happens if you
remove the letter s?

59

6 Tick... tick... tick...

The neat thing about a process network is that you can swap
one process for another if it “speaks the same language.” By
this, we mean that you can swap one process for another if
the input channels and the output channels carry the same
kind (or type) of information.

In this short chapter, we’ll make one change to the code
from Push the Button to demonstrate this.

6.1 Seeing the parts

We just finished writing our first process network; now, lets
tear it apart. This network was made up of two processes,
button.press and pin.toggle.

button.press pin.toggle
s

14 13, LOW
SIGNAL

Figure 6.1: Our two-process network.

60

6 Tick... tick... tick...

button.press
s

14
SIGNAL

(a) One output channel...

pin.toggle
13, LOW

s
SIGNAL

(b) ... or one input channel.

Figure 6.2

If we look at this process network from the point of view of
button.press, we might say:

button.press has one output channel, s, that
carries information of type SIGNAL.

We can also look at this network from the point of view of
pin.toggle. Then, we might say:

button.press has one input channel, s, that car-
ries information of type SIGNAL.

We can see these two ways of looking at the parts of our
process network in Figure 6.2. Now we’ll introduce a new
new PROCedure from the Plumbing library: tick.

tick
s

500
SIGNAL

Figure 6.3: Another PROCedure in the Plumbing library.

61

6 Tick... tick... tick...

The process tick takes two parameters: the first is the
number of milliseconds between ticks, and the second is the
sending end of a channel that carries signals. Now, here’s the
code from Chapter 5:

1 PROC main ()
2 CHAN SIGNAL s:
3 PAR
4 button.press (2, s!)
5 pin.toggle (13, LOW , s?)
6 :

Figure 6.1: Our original program uses button.press.

Because both button.press and tick have the same in-
puts (none) and the same outputs (one channel that carries
messages of type SIGNAL), we can substitute one for the other.
Once we do that substitution, our code looks like:

1 PROC main ()
2 CHAN SIGNAL s:
3 PAR
4 tick (500, s!)
5 pin.toggle (13, LOW , s?)
6 :

Figure 6.2: One substitution changes the program.

Because the pin.toggle process expects a SIGNAL to tell
it when to turn its pin on or off, it doesn’t matter where that
signal comes from. It could be that it comes from a button
press, or it could come from a clockwork ticker!

62

6 Tick... tick... tick...

6.2 Exploring “plug-n-play”

As we continue to explore the Plumbing library, you are en-
couraged to experiment with modifications of your existing
process network. Particularly, we hope you explore this no-
tion of what we call “plug-n-play.”

Process networks are connected by CHANnels. As you saw
in this chapter, we can get very different behavior from very
similar code, simply by replacing one process with another.
When using occam-π and the Plumbing library, your should
strive to write lots of small, simple PROCedures. Then, you
can combine these PROCedures into a process network, and
(most importantly) rearrange the process network (or substi-
tute one process for another) if you want to get different be-
havior from your program.

Matthew’s Runaway was a piece of
art developed by substituting one
PROCedure for another.

For example, if you are
developing a piece of art
that you intend to be in-
teractive, you might start
by testing it with a pro-
cess like tick. Then,
when you’re done program-
ming, you might switch that
with a process that han-
dles input from the world
(eg. button.press). Then,
your piece is ready for inter-
action with people viewing
your piece in a gallery.

63

7 Undressing Toggle

In the last chapter, we saw that one process can be substituted
for another when they have the same input and output chan-
nels. In this chapter, we’ll explore how we can combine sev-
eral PROCedures into one new PROCedure, simplifying our
code further.

Because we promised that you would learn how to write
everything you saw in this book, we will peel back the layers
of the pin.toggle procedure, and show you what is inside
of it. Specifically, you’ll see that the pin.toggle procedure
is just two more procedures stuck together with a channel!

7.1 The Circuit

The circuit for this chapter is identical to Chapter 5. You
should be able to type in the code from this chapter, run it,
and get exactly the same behavior as before.

64

7 Undressing Toggle

7.2 The Network

We’ll continue using the network from Chapter 5: Push the
Button.

button.press pin.toggle
s

14 13, LOW
SIGNAL

7.3 Breaking up is hard to do

We’re going to “break up” the process called pin.toggle,
and represent it as two processes instead of one. The result
will be a process network with a total of three processes.

button.press toggle
s

14

pin.level
13

v
SIGNAL LEVEL

LOW

Figure 7.1: The process network for this chapter’s code.

If you were to look in the code for the Plumbing library,
you would find that pin.toggle is actually just two pro-
cesses running in PARallel with each-other. In this chapter,
we’ll break pin.toggle apart, and in the next chapter, we’ll
put it back together again.

65

7 Undressing Toggle

7.3.1 From pictures to code

From this network, we can write the code. We know there
are three processes, so we’ll list all of them. Further, we know
they communicate with each-other (because they’re connected
with channels), so we’ll put them under a PAR right from the
start.

1 PAR
2 button.press ()
3 toggle ()
4 pin.level ()

Next, we can see there are two CHANnels. One is of type
SIGNAL, the other of type LEVEL. To use a channel, we have
to declare it before it is used. So, we’ll include two channel
declarations.

1 CHAN SIGNAL s:
2 CHAN LEVEL v:
3 PAR
4 button.press ()
5 toggle ()
6 pin.level ()

Next, we need to give the PROCedures their parameters.
We do this through a combination of reading the Plumbing
library documentation1 as well as studying the process net-
work diagram.

1http://concurrency.cc/docs/

66

http://concurrency.cc/docs/

7 Undressing Toggle

button.press takes a pin number and the sending end of
channel, toggle takes an initial level (which we set to LOW),
two channel ends (the receiving end of s and the sending end
of v), and pin.level takes a pin and the receiving end of v.

1 CHAN SIGNAL s:
2 CHAN LEVEL v:
3 PAR
4 button.press (2, s!)
5 toggle (LOW , s?, v!)
6 pin.level (12, LOW , v?)

The last step is to wrap everything up in a main() PROCedure.
This is the same thing we did in Chapter 5.

1 PROC main ()
2 CHAN SIGNAL s:
3 CHAN LEVEL v:
4 PAR
5 button.press (2, s!)
6 toggle (LOW , s?, v!)
7 pin.level (12, v?)
8 :

Once again we have studied a process network and con-
verted it into code based on our understanding of what the
diagram means.

67

7 Undressing Toggle

7.4 What does toggle do?

Toggle is new to us in this chapter. It takes in a SIGNAL, and
outputs a LEVEL. If you focus your attention on toggle only
(Figure 7.2), you’ll see that it has one channel coming in from
the left, and one channel going out on the right. The toggle
process waits until it receives a SIGNAL on the channel s;
when it does, it sends out a message on the channel v.

button.press toggle
s

14

pin.level
13

v
SIGNAL LEVEL

LOW

Figure 7.2: Toggle has one channel in, and one channel out.

toggle is kinda cool. Up until this chapter, we have only
seen SIGNALs. Now, we have LEVELs. Digital pins on your
Arduino can be set to either HIGH or LOW. When they are
LOW, they are off. When they are HIGH, they are at +5 volts.
toggle starts off LOW, and every time it receives a SIGNAL,
it flips its level and sends that value out.

68

7 Undressing Toggle

We could say that toggle follows the following three steps
over and over:

1. toggle waits until it receives a SIGNAL,

2. flips the value of its level,

3. sends out its new level, and

4. goes back to step 1.

If we “unroll” this loop a bit, we would say that toggle:

1. waits for a SIGNAL on channel s,

2. flips from LOW to HIGH,

3. sends HIGH out on channel v,

4. waits for a SIGNAL on channel s,

5. flips from HIGH to LOW,

6. sends LOW out on channel v,

7. ...

You could say that toggle turns SIGNALs into messages
that have a value, and those values are used to turn a pin on
(HIGH) and off (LOW).

69

7 Undressing Toggle

7.5 Pattern: A Pipeline

Plumbing programs are all about networks of processes send-
ing information to each-other using channels. Channels are
(we’re sorry) the plumbing that makes our programs work. In
the previous chapter, you saw how button.press sent a
SIGNAL to the process pin.toggle, which then turned the
built-in LED on and off. As it turns out, this whole network
of processes is like a pipeline that carries information from one
stopping point to the next.

70

7 Undressing Toggle

A pipeline carries stuff from one place to another. When
we string multiple processes together in a straight line, we
have constructed a pipeline of processes. It is, essentially, an
assembly line, where each process processes some informa-
tion, and then passes the result of that work along. In Plumb-
ing, each process has to wait for information from the “up-
stream” process; that is, pin.level waits for messages from
toggle, and togglewaits for messages from button.press.
In technical terms, this would be called a buffered, synchronous
pipeline.2.

The Pipeline is one of the simplest patterns for processing
information in parallel. It shows up everywhere, from the
command-line on Linux, to the way a web server handles re-
quests from your web browser, to the central processing unit
in your computer. The Pipeline is one of the Big Ideas in com-
puting.

Congratulations. You’ve just explored it on your Arduino.

2See http://en.wikipedia.org/wiki/Pipeline_(computing)
for more information about pipelines in computing.

71

http://en.wikipedia.org/wiki/Pipeline_(computing)

7 Undressing Toggle

7.6 Explorations and Breakage

One thing you can do is to explore the Plumbing library a bit
at this point. There are many processes in the Plumbing li-
brary; one you haven’t seen yet is called invert.level. It
takes in a LEVEL value on one channel and outputs the oppo-
site value on another. That is, it has a LEVEL channel coming
in, and a LEVEL channel going out. Try using it in your pro-
cess network—it only fits in one place.

Or, you can explore how you can break this code. It may
seem like we come up with lots of ways to break your code at
the end of every chapter. That’s because we want you to ex-
perience as many errors as possible in a controlled way before
we set you free.

Wrong channel types
What happens if you take the code we started with and
swap around SIGNAL and LEVEL on lines 2 and 3? Do
things still work?

Wrong channel order
Modify line 7 so that toggle has its read and write
channels in the wrong order. That is, flip it from (s?,
v!) to (v!, s?).

Wrong channel directions
Modify line 7 so that toggle has its read and write
channels are pointing in the wrong direction. That is,
flip it from (s?, v!) to (s!, v?). (Subtle, no? Don’t
worry. If you draw pictures first, this is a difficult mis-
take to make.)

72

7 Undressing Toggle

Wrong pin number
What happens if you have the wrong pin number in ei-
ther button.press or digital.output?

Initial state flip
What happens if you change digital.output so that
it starts with HIGH instead of LOW?

Forgetting a process
What happens if you simply remove toggle? (Draw a
new version of the process network from this chapter,
and leave out toggle. Does that look right? This is
what happens when you remove line 7 from your pro-
gram!)

73

8 Buttons Everywhere

When you’re developing your program—exploring ideas—
you’ll often find that things get long and out-of-hand. This
chapter will help you see both how to handle multiple inputs
and multiple outputs, as well as how to reorganize your code
to make it more readable.

8.1 The Challenge

You want to develop a circuit that has multiple inputs and
multiple outputs. In our case, we’ll use pushbuttons as our
inputs and and LEDs as our outputs—but the principles we’re
going to explore will be the same regardless of what serves as
the source for your input and the destination for your output.

We know that one button and LED yields a process net-
work with two PROCedures. This will serve as our starting
point.

74

8 Buttons Everywhere

button.press pin.toggle
s

14 13, LOW
SIGNAL

Figure 8.1: The network from Chapter 5 again.

8.2 The Circuit

This circuit builds on the circuit from Chapter 5. We add an-
other button (to pin 3) and another LED (to pin 6).

Figure 8.2: Two buttons, two LEDs.

75

8 Buttons Everywhere

Looking at the process network on 8.1 on the preceding
page, we can see that it will work just fine with this circuit.
That is, we can run the code from the previous chapters and
still control one of the LEDs. It we want to handle the other
button and LED, however, we’ll need another button.press
procedures and more pin.toggle procedures.

8.3 Reusing Procedures

Here is the code from Chapter 5.

1 PROC main ()
2 CHAN SIGNAL s:
3 PAR
4 button.press(2, s!)
5 pin.toggle (13, LOW , s?)
6 :

We have one channel s connecting our button input from
pin 2 to our toggle process controlling the LED on pin 13.
As it happens, we’re able to use PROCedures more than once,
providing them with different parameters. In a picture, the
process network looks like Figure 8.3 on the next page.

Put simply, we run the same PROCedure multiple times, but
we provide it will different parameters. One button.press
is told to watch pin 2, while the second button.press is
told to watch 3. Note, though, that each CHANnel must have
its own unique name. Although it isn’t very creative, I’ve
named one channel s1 and the other s2.

76

8 Buttons Everywhere

button.press pin.toggle
s1

2 12, LOW
SIGNAL

button.press pin.toggle
s2

3 6, LOW
SIGNAL

Figure 8.3: Change the parameters to reuse PROCedures

The reason we like using occam-π for writing this kind of
program is that it is remarkably easy to convert this process
network into code. We take the code we wrote before, and
we simply run two more processes under the same PAR. We
will have to add one more channel declaration, but that’s not
so hard. When we’re done adding in two more processes, we
end up with code that looks like this:

1 PROC main ()
2 CHAN SIGNAL s1 , s2:
3 PAR
4 button.press(2, s1!)
5 pin.toggle (13, LOW , s1?)
6 button.press(3, s2!)
7 pin.toggle(6, LOW , s2?)
8
9 :

77

8 Buttons Everywhere

8.4 Managing complexity

When programming in occam-π, we like the fact that we can
add more PROCedures underneath a PAR and handle more
things concurrently (“at the same time”). Unfortunately, our
PAR can grow a bit unwieldy. Eventually, it’s nice to be able
to bundle things up and shrink the amount of code we have
in any one PROC. If you prefer, we’re going to reverse the pro-
cess we saw in the last chapter: instead of breaking one pro-
cess apart, we’re going to build a new one by putting smaller
pieces toether.

For example, it might be nice to introduce a new PROC
called b2p (short for “button to pin”). This PROCedure will
take two parameters: the pin that a button is connected to
(button.pin), and the pin that an LED is connected to (led.pin).
It will “hide” from us the fact that there is a channel commu-
nication between button.press and pin.toggle.

We might start our code this way:

1 PROC b2p (VAL INT button.pin , led.pin)
2 :

The two parameters that this PROCedure is going to expect
are constants, or numbers that cannot be changed. In occam-
π, we can’t say CONSTANT, but we can say VAL INT, which
means it is a number (an INTeger) and it is a VALue, not a
variable.

78

8 Buttons Everywhere

Inside of this PROC, we can build a small process network.
Specifically, we’ll put button.press and pin.toggle, and
connect them up as we did before.

1 PROC b2p (VAL INT button.pin , led.pin)
2 CHAN SIGNAL s:
3 PAR
4 button.press(button.pin , s!)
5 pin.toggle(led.pin , LOW , s?)
6 :

The critical change made in connecting button.press to
pin.toggle is that we substituted button.pin for one of
the parameters of button.press, and led.pin for one of
the parameters of pin.toggle.

Now that we have combined button.press and pin.toggle
in one PROC called b2p, we can use that in the rest of our code.
We can now write our main PROC this way:

1 PROC main ()
2 PAR
3 b2p(2, 12)
4 b2p(3, 6)
5 :

If we were to “peel back” both of these PROCedures, we’d
end up right back where we started: with two copies of the
button.press PROC and two copies of pin.toggle, each
connected by their own channel. This way, we’ve simplified
our program, and we can now reuse b2p, our new PROC, as
part of other process networks.

79

8 Buttons Everywhere

8.5 The Code

Here is the full program from this chapter, in one place.

1 PROC b2p (VAL INT button.pin , led.pin)
2 CHAN SIGNAL s:
3 PAR
4 button.press(button.pin , s!)
5 pin.toggle(led.pin , LOW , s?)
6 :
7
8 PROC main ()
9 PAR

10 b2p(2, 12)
11 b2p(3, 6)
12 :

8.6 Breakage

As always, there are many ways to break your code. Breaking
code is part of how you learn.

Bad constants
What happens if you use a value for a pin that is too
large (eg. 42)?

Forget the VAL
What happens if, in your definition for b2p, you forget
the word VAL?

Reuse some pins

80

8 Buttons Everywhere

What happens if you try and use b2p twice, but you use
the same constants both times?

Mixup pins
What happens if you mix up button.pin and led.pin
in the PROCb2p?

Switch the order
Does anything break if you put one b2p before the other
in the PAR?

Forget a comma
There are several place that we’ve used commas. What
happens if you leave one out?

Use a channel twice
If you go back to the code from the middle of the chap-
ter, what happens if you use s1? more than once? What
happens if you use s2! more than once?

Fail to use a channel
What happens if you declare a channel but never use it?
Add

CHAN SIGNAL oops:

before the PAR in your main and see what happens.

81

9 Making things Move:
Servos

So you’ve got a servo, do you? And you want to drive it with
your Arduino, do you? Well. You’ve come to the right place.
In this next series of chapters we’ll be walking through the
code and syntax you’ll need to drive servos. In this chapter
we’re going to simply explore turning the servo on, but we’ll
quickly be moving up towards more interesting operations.
It’s also definitely worth a note that even if you don’t have a
servo, you can still explore the concepts and syntax brought
forward in these next five chapters. The simple.servo(..) pro-
cess we’ll be spending a great deal of time with has the same
signature as the pwm(..) process that was the focus of chap-
ters [whatever], so if you’re willing to experiment some, all
of the code that’s designed here to drive servos can drive a
fading LED!

9.1 Goals

1. To understand what a servo needs in order to properly
operate.

82

9 Making things Move: Servos

2. To revise our understanding of what CHANnels can do.

3. To set a servo’s position with the simple.servo(..) pro-
cess.

9.2 Building the Circuit

One of the fun things about this circuit is that we don’t ac-
tually need the bread-board. We can plug our servo right
into the Arduino pins and run straight off the board. All you
will need are: 1 Your Arduino 2 Your Servo [[CIRCUT DIA-
GRAM]]

You servo might not look much like the one in the diagram
above, and perhaps your ground, power and control wires
aren’t in the same order. That’s perfectly fine. What’s crucial
is making sure your ground wire is the one plugged into the
ground pin, your power is plugged into the 5v pin, and that
your control is plugged into one of the correct PWM pins. If
this is not done, bad things could very well happen to both
your board and your servo. And that would be bad. Measure
twice, run your servo.. more than once, actually, is the goal.

The fact that we’re plugging the control wire into pin 11 is
more important than you might think. As discussed in previ-
ous a chapter[s], PWM pins are connected to Counters in the
Arduino’s processor. Some of these counters are 8 bit (and
can thus only count up to 255 – the maximum value of a sin-
gle BYTE), and – on the Arduino – only one of these is a 16 bit
counter (meaning it can count well past 60,000). For servos to
operate properly, we need the control wire to be plugged into

83

9 Making things Move: Servos

not just a PWM pin, but a 16 bit PWM pin.

[[SIDE BAR]] On the Arduino, and any other board using
an ATmega328p processor, the only two pins that are con-
nected to a 16 bit timer are: 9, and 10. On boards like the Ar-
duinoMega and the ArduPilotMega – boards equipped with
the Atmega1280 – the range of 16 bit pins is quite a bit wider.
You can select from pins: 2, 3, 5, 6, 7, 8, 11, 12, 13, 44, 45 or 46.

9.3 Code

1 PROC main ()
2 CHAN BYTE pos.chan:
3 PAR
4 simple.servo (11, pos.chan?)
5 pos.chan ! 45
6 :

Before we get started talking about the code we’ll be writ-
ing today, there’s one piece of information you probably want
to have on hand. We have an appendix in the back of this
book that describes in enough detail the mechanical opera-
tions of servos, but as teaching electrical engineering isn’t the
goal of this book, we won’t bore you with unnecessary de-
tails. What you need to know though, is that the /minmum
and maximum control pulse widths are to 1000 mircoseconds
and 2000 mircoseconds respectively/. As each servo is differ-
ent, yours might have different minimum and maximum val-
ues. If your servo can take shorter and longer pulse widths
(as is probably the case), there’s nothing to worry about. If

84

9 Making things Move: Servos

your servo’s minimum pulse needs to be longer than 1000
mircoseconds, or if its maximum pulse needs to be shorter
than 2000, *this code may be damaging to your servo*. It’s
always better to be safe than sorry, so if you love that servo
you’re going to be playing with, be sure to double check its
speicfications. If need be, simply read through these next five
chapters so you have an idea of what’s going on with the
code, and when you get to chapter six we’ll shoe you how
to set the minimum and maximum pulse widths manually.

As has already been mentioned, the hot, new processes
we’re going to be spending some time with in this section
is simple.servo(..). It’s a very simple process. As we can see
from the network digram for the code we’re about to write,
simple.servo(..) only has one parameter, and takes a single
CHANnel of type BYTE

[[PARTIAL NETWORK DIAGRAM]]

CHANnels of BYTEs are built to carry a good bit more in-
formation than the channels we’re used to working with. SIG-
NAL channels actually only convey the information that a
SIGNAL has been sent. There’s no state data that’s sent in
a SIGNAL. We have played a little bit with LEVEL channels
which do carry some information with them, but LEVEL is a
very limited data type. It can contain either HIGH or LOW,
and nothing beyond that. The BYTE data type can contain
any number between 0 and 255 which – as far as numbers are
concerned – isn’t that much of a range. It’s enough to contain
the degree ranges of 0 to 180 though, which should act as a
good approximation for the range of most hobbie servos. You
can see the BYTE channel we’re going to be using is named

85

9 Making things Move: Servos

pos.chan, which is – if you fcan believe it – short for position
channel, as this channel is what we’re going to be using to set
the position of our servo.

So, to get some code written from that network diagram,
we can see that we’re going to have to declare a CHANnel,
and place simple.servo in parallel (so communications can oc-
cur). [[CODE]] CHAN BYTE pos.chan: PAR simple.servo(11,
pos.chan?)

If you haven’t started worrying about what’s missing been
missing from that network diagram... well, don’t worry, we’re
about to solve that little conundrum. We’ve left off what’s
connected to the sending end of pos.chan because there ac-
tually isn’t going to be a named process talking down that
channel. So far in this book, we’ve always been plugging to-
gether pre-built process with channels; passing the sending
end to one process and the recieving end to another. Because
we want to actually retain control over the servo’s positions,
it won’t do to hand the sending end of that channel to an-
other process. We need to communicate down that channel
ourselves.

The way to do that is remarkably easy, actually. There are
three elements to any message sent directly by the user. The
first thing we have to do is specifiy which channel we’re go-
ing to talk down, [[CODE]] *pos.chan* Tell our code that we’re
going to be sending a message down the channel (if you re-
member, sending and recieving has everything to do with the
! (bang) and the ? (’eh). We’ve already passed the ? into
simple.servo, so we’re going to be taking advantage of that
! now) [[CODE]] pos.chan *!* And then we need to specify

86

9 Making things Move: Servos

what we want to send. Becuase this channel is controlling the
position of our servo in terms of the degrees between 0 and
180, let’s tell that servo to head towards the 45 degree mark.
[[CODE]] pos.chan ! *45*

[[SIDE BAR?]] It’s very important that we always make
sure that the message we send is of the same type as the chan-
nel we’re sending it down. Channels of type LEVEL can only
send HIGH or LOW, as those are the only two LEVELs out
there. Channels of type BYTE, as has been said, can only send
the numbers between 0 and 255, etc. SIGNAL channels are a
little special though. I said that every communication down
a channel is made up of those three elements – the channel
name, the fact that we’re sending something, and what we’re
communicating – but because SIGNALs don’t actually com-
municate any state data – just that a SIGNAL has been sent –
there’s nothing for a SIGNAL to communicate. To send a SIG-
NAL, we just have to write: [[CODE]] signal.name ! [[/SIDE
BAR?]]

Once we’ve updated our network diagram to show the fact
that we’re going to be the ones communicating down pos.chan:

[[UPDATED NETWORK DIAGRAM]]

We can see that we need to add that line of code that sends
that positinal information under the PAR so simple.servo can
hear us when we ! that message off. [[CODE]] CHAN BYTE
pos.chan: PAR simple.servo(11, pos.chan?) pos.chan ! 45

Then we just need to wrap that code in the usual PROC
main () ... :, indent everything those last two spaces, and
we’ll have some code that sets our servo to a 45 degree an-

87

9 Making things Move: Servos

gle! [[CODE]] PROC main () CHAN BYTE pos.chan: PAR
simple.servo(11, pos.chan?) pos.chan ! 45 :

88

10 Acknowledgements

10.1 Software

Plumbing for the Arduino was typeset using LATEX. Writing was
carried out in either TextMate by Allan Odgaard or vi. Di-
agrams were produced using OmniGraffle Pro by the Omni
Group, and screen captures were made using Snapz Pro by
Ambrosia Software.

The completely awesome circuit diagrams were made using
Fritzing, an open source project that lets complete noobs de-
sign circuits visually, then see the same circuit as a schematic,
and finally export that circuit as a PCB for etching by hand or
automated manufacture.

89

10 Acknowledgements

Fritzing is truly a wonderful tool in progress; it was one
of our discoveries while working on Plumbing. We had to
to take a moment and gush its praises here—explore it, and
discover the joy of circuit design.

10.1.1 occam-π and Plumbing

occam-π was originally designed under the guidance of David
May, implemented by the fine people at inmos, and shep-
herded by Professor Peter Welch at the University of Kent
in Canterbury, England for the past 20 years (give or take).
Many of the features that put the π in occam-π were imple-
mented by Fred Barnes.

The Transterpreter, which allows us to run occam-π on tiny
platforms like the Arduino, was originally designed and writ-
ten by Christian Jacobsen and Matt Jadud, and extended and
improved by Damian Dimmich, Carl Ritson, Adam Samp-
son, and Jon Simpson. The concurrency.cc board was de-
signed by Omer Kilic. The concurrency.cc logo was de-
signed by Geoffrey Long.

The Plumbing library was originally written by Christian
Jacobsen, Matt Jadud, and Adam Sampson. Contributors since
then include:

Radu Creanga Code for implementing PWM.

90

concurrency.cc
concurrency.cc

10 Acknowledgements

10.2 Images

All images in this text were produced by the authors unless
noted below. We have tried to use images placed in the Com-
mons wherever possible.

The cover image was made available under a CC-BY license
by Flickr user macinate:

http://www.flickr.com/photos/macinate/2191054677/

The T414 on page 8 was found on the Wikipedia under a CC-BY-
SA-2.5 license:

http://en.wikipedia.org/wiki/File:IMST414B-G20S.
JPG

The juggling LEGO figure on page 46 was made available by
Flickr user helico under a CC-BY license:

http://www.flickr.com/photos/helico/404640681/

The image for “waiting” on page 50 was made available by Flickr
user red twolips under a CC-BY license:

http://www.flickr.com/photos/25182350@N03/2957915812/

The image for “pipeline” on page 70 was made available by Flickr
user nz willowherb under a CC-BY license:

http://www.flickr.com/photos/willowherb/3320805930/

The image for delta PWM on page ?? was made available by
Cyril Buttay under a CC-BY-SA license:

http://en.wikipedia.org/wiki/File:Delta_PWM.png

The FTDI chip image on page 12 was made available as part of
the Arduino “Getting Started” guide under a CC-BY-SA 3.0 license
(20110115):

91

http://www.flickr.com/photos/macinate/2191054677/
http://en.wikipedia.org/wiki/File:IMST414B-G20S.JPG
http://en.wikipedia.org/wiki/File:IMST414B-G20S.JPG
http://www.flickr.com/photos/helico/404640681/
http://www.flickr.com/photos/25182350@N03/2957915812/
http://www.flickr.com/photos/willowherb/3320805930/
http://en.wikipedia.org/wiki/File:Delta_PWM.png

10 Acknowledgements

http://arduino.cc/en/uploads/Guide/FTDIChip.png

The Arduino Pro without an FTDI chip on page 13 was made
available by David Mellis under a CC-BY 2.0 license (20110115):

http://www.flickr.com/photos/mellis/4784333335/

The FTDI Friend on page 14 was made available by Lady Ada
under a CC-BY license (20110115):

http://www.flickr.com/photos/ladyada/4987941401/

92

http://arduino.cc/en/uploads/Guide/FTDIChip.png
http://www.flickr.com/photos/mellis/4784333335/
http://www.flickr.com/photos/ladyada/4987941401/

11 Book Bugs

Our text is not perfect. If you find errors in the text, please pass
them on to bookbugs at concurrency dot cc. We would like
to acknowledge your help here.

93

	Getting Started
	Goals
	Installing the Drivers—or Not
	You have an old Arduino
	You use an adapter
	You have a new Arduino

	Testing JEdit
	Upload the Firmware

	One Blinkenlight
	Goals
	Code
	Open JEdit
	Write your Program
	Build Your Code

	Patterns
	The KeywordPROCedure Definition
	A KeywordPROCedure Call

	Breakage
	Programming Strategies

	Other Resources

	Speedy Blinkenlight
	Goals
	Building the Circuit
	The Breadboard
	The Arduino
	The Resistor
	The LED
	Completing the circuit

	Code
	Patterns
	Experimenting with Changes
	Breakage
	Break your circuit
	Break your program

	Two Blinkenlights
	Goals
	Build the circuit
	Code
	The KeywordPAR pattern
	The truth about KeywordPAR
	Explorations

	Breakage

	Push the Button
	Goals
	The Circuit
	Pictures and Code
	From pictures to code
	In summary

	Breakage

	Tick... tick... tick...
	Seeing the parts
	Exploring ``plug-n-play''

	Undressing Toggle
	The Circuit
	The Network
	Breaking up is hard to do
	From pictures to code

	What does toggle do?
	Pattern: A Pipeline
	Explorations and Breakage

	Buttons Everywhere
	The Challenge
	The Circuit
	Reusing Procedures
	Managing complexity
	The Code
	Breakage

	Making things Move: Servos
	Goals
	Building the Circuit
	Code

	Acknowledgements
	Software
	occam- and Plumbing

	Images

	Book Bugs

