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Preface

Although a series of technical advances (in the last two decades) has
significantly increased the execution speed of a standard Von-Neumann
computer, there are insurmountable physical barriers that will inevitably
restrict the power of the uniprocessor. The supercomputers of tomorrow
will have to harness parallel computing if the insatiable appetite for faster
and faster machines is to be even partially satisfied. The means by which
the potential power of parallel processing may be captured is, however, a
matter of much research, debate and experimentation.

Coupled to the development of multiprocessor and multicomputer
systems has been the direct introduction into programming languages
of the concept of concurrency. Not only have these languages had to
deal with the possibility of parallel execution but they have had to .
recognize the fact that most computing applications (e.g. real-time
systems) are inherently parallel in nature. Programming such
applications in purely sequential languages has inevitably led to
difficulties in terms of reliability, cost and maintainability. These
sequential languages lack the expressive power to deal with the
problem domain.

This book is concerned with one specific concurrent program lan-
guage, occam 2. It also deals, to a lesser extent, with one means of
harnessing parallel computing, namely transputers. Both of these develop-
ments are highly significant within the computing industry (and have been
undertaken by the company INMOS).

A complete and comprehensive description of the language is given,
with examples being used to illustrate all of the important features. No
prior knowledge of concurrent programming (in general) is assumed.
However, readers should have a good understanding of at least one
high-level sequential programming language.

This book is aimed at professional software engineers, students of
computer science (and other related disciplines) and application pro-
grammers. Contained within this last group are all those scientists and

vil
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engineers who may wish to exploit occam and the transputer to solve
problems that emerge within their own disciplines.

Occam 2, as its name suggests, is a language that has developed from
earlier versions; the two most significant of which are preliminary occam
and occam 1. Within this book the generic term ‘occam’ will be used to
mean occam 2. Although the specification of occam 2 was only finalized in
1987, earlier versions of occam have been used in many large applications,
and systems that use hundreds of transputers have been constructed. These
early applications indicate that not only do multi-transputer systems give
the increases in execution speed one would expect, but that occam is an
appropriate language for expressing parallel activities and exploiting the
potential power of the hardware.

The language itself is defined by documents that are internal to
INMOS. There is no national or international standard. This will inevitably
mean that versions of occam 2 will emerge that are not completely
compatible with the material presented in this book.

Following an introduction, Chapter 2 looks, in detail, at the uses of
concurrent programming and the inherent difficulties of providing inter-
process communication. In order to understand fully the process model
within occam it is necessary to consider first the wider topic of concurrent
programming and to analyse the alternatives that are available when
designing a language for expressing parallel activities.

Chapter 3 is the largest and perhaps most important chapter. It
considers the basic structure of the language and describes most of the
constructs that are provided. When considering occam it is important to
realize that the language is not a sequential one to which concurrency has
been added. The notion of process is fundamental to the design of occam,
and communication between processes is seen to be at the same primitive
level as the traditional assignment operation. This chapter is therefore
called ‘Occam Processes’.

Occam 2 is a strongly typed language, providing a range of predefined
scalar types and the means by which arrays and records can be constructed.
There is nothing novel about these provisions and the reader is assumed to
be familiar with the concepts of type and data structure as they are used in
Chapter 4. The version of occam described in this book, however, contains
data structures, such as records, that may not be supported on all
implementations.

The general issue of communicating data objects between processes is
considered in Chapter 5. Between any two processes that wish to exchange
data is defined an intermediary, known as a channel. Channels are defined
with a protocol that specifies the type of the objects that are allowed to be
passed down that channel. Such protocols can be a simple type, a sequence
of types or a variant. Variants protocols are used to allow two processes to
communicate a variety of objects without having to use a number of
different channels.
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The main form of modularity within occam is the procedure. Chapter 6
describes the occam PRoC and the associated parameter passing model. This
model is based on the concept of abbreviation. Examples of PROCs are given
and some important issues about the design of occam programs are
discussed. Functions are supported and these are also illustrated in this
chapter.

Chapters 7 and 8 are concerned with the transputer. Firstly the
transputer itself is described and then in Chapter 8 the implementation
of occam on the transputer is considered. This illustrates the close
association between the transputer and the language. Occam has been
designed so that an efficient implementation is possible and, more
significantly, the transputer’s basic architecture and instruction set have
been chosen so that the most effective means of programming the device
is in a high level concurrent programming language — not assembler or
machine code!

Specifying input and output within high level languages is always
non-trivial and many languages choose a mechanism that is at variance
with the basic model of the language (cf. Pascal). Occam allows specially
defined channels to pass data into (or out of) the program. This provides an
adequate, if not very powerful, interface between the program and its
environment. More significantly, occam also provides for the direct
programming of the necessary low-level interfaces between external
devices and controlling software. This is described in Chapter 9.

One of the attractive features of occam is that it has been designed
with formal specification techniques in mind. Although a formal speci-
fication of the semantics of the language is beyond the scope of this book,
one of the benefits of having a formal basis to the language is that
transformation laws can be defined. A transformation law expresses an
equivalence between two fragments of occam code; if they are equivalent
then one can be exchanged for the other. This technique by which occam
programs are transformed (to, for example, increase their parallelism) is
discussed in Chapter 10. By considering occam laws not only are trans-
formation techniques introduced, but the semantics of the language
constructs are re-emphasized and further programming techniques are
introduced. :

Finally, in the last chapter, a comparison is made between occam and
the important and (relatively) new language Ada. This material illustrates
how two concurrent programming languages, which superficially have
similar structures, are in fact, in detail, quite distinct.

The material presented in this book reflects the author’s experiences in
writing and giving industrial courses on occam and on the transputer.
These courses are given on behalf of The Instruction Set. Occam is now
studied by most computer science students in the UK and much of the
material in this book forms part of final year and MSc courses at the
University of Bradford (UK). ’
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CHAPTER 1
Introduction

The emergence of VLSI technology has enabled and encouraged the
widespread use of multiprocessor and multicomputer systems. It is now
possible to construct, as a single device, a powerful microcomputer with
memory, processor and communications. These microcomputers can then
be linked together to give high performance systems with arbitrary
topologies. Indeed they can be considered as the ‘building blocks’ for such
systems in the same way that logic gates can be combined to form digital
systems (May and Taylor, 1984).

This changing structure of computer hardware has put pressure on
language designers to provide the primitives necessary to allow pro-
grammers to express parallelism directly within their programs. These
primitives must not only be easy to use and have adequate expressive
power but they must also be implementable in a way that harnesses the
potential power of these multiprocessor architectures (whilst giving accept-
able performance on single processor systems). Occam is one such
language; its design has been closely associated with the development of
the transputer and yet it is an abstract language that has the dual role of
being an implementation language and a design formalism. Although
linked with the transputer, the importance of occam goes beyond its
implementation on any particular hardware system. It represents the
culmination of many years of research effort that has been centred on the
CSP language (Hoare, 1978, 1985). The result of this is a concurrent
programming language that is simple, elegant and powerful.

The name occam was chosen in recognition of this simplicity. William
of Occam, a 14th century philosopher, is responsible for the adage
(known as Occam’s razor) that: ‘Entities are not to be multiplied beyond
necessity’. This is normally used as a plea to keep things simple.
Although the present definition of occam (the one described in this book)
is clearly not as simple as earlier versions (INMOS, 1984), it is neverthe-
less much less complex than other concurrent programming languages
such as Ada (Burns, 1985).
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1.1 The nature of concurrency

In the above paragraphs occam (and Ada) were described as concurrent,
rather than parallel, programming languages. The terms concurrent and
parallel have similar but distinct meanings and it is important that they are
not confused. Two entities are said to be executing in parallel if at some
instant in time both are actually executing. Entities are described as
concurrent if they have the potential for executing in parallel. A concurrent
programming language will therefore have more than one distinct thread of
control. Objects that could execute in parallel are directly represented. This
can be compared with sequential languages such as FORTRAN, COBOL
and Pascal in which there is only a single thread of control.

The most flexible mode of concurrency is known as MIMD (Multiple
Instruction Multiple Data). This implies that the distinct threads of control
can be executing different instructions and manipulating different data
structures. MIMD concurrency can be compared with other more restricted
forms of concurrency such as vector processing or SIMD (Single Instruction
Multiple Data). The objects that can execute simultaneously within a
MIMD framework are usually known as processes; another term often used
is task. In some concurrent programming languages processes can only be
defined at the top level; other languages allow for their hierarchical
structuring (in which case there is a parent-child relationship between
processes in the hierarchy). Some languages allow for dynamic process
creation (while the program is executing), others will only support a static
set. The process itself can be large and complex like a disk controller or, at
the other extreme, a single statement may represent a process.

The representation of processes, within a language, takes many forms,
as do the semantic rules that govern when a process should start executing
and when it can terminate. In addition, a concurrent programming
language will need to support some means by which processes can
communicate data and synchronize their executions. These issues are
discussed in Chapter 2. Finally some method by which a process can delay
itself will need to be supported. In real-time systems a process will often
wish to be delayed until some future event has taken place. This must be
done in an efficient way that does not waste processor cycles or lead to
unnecessary communications.

The implementation of a system of processes may take, in general, one
of three forms.

1. All processes run on a single processor.

2. Each process runs on its own processor and all processes have access to
COmMIMOoN Mmermory.

3. Each process runs on its own processor and there is no shared
memory. Processors are linked by a communication network.
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Hybrids of these three structures are -also possible. For example there
could be a collection of processors, some of which have shared memory,
and upon each processor a number of processes may execute. Note that
only in cases (2) and (3) are processes actually executing in parallel.
However they are all concurrent systems.

After coming into existence a process’s life-history can be defined in
terms of three primary states: executing, executable and suspended. A
process is suspended if it is delayed (most synchronization primitives can
lead to delay). This state is also known as blocked, and unrunnable. If it is
not suspended then a process can either be executing, if there is a processor
available, or be able to execute (but be prohibited from doing so by the
lack of a processor).

With earlier languages aimed at real-time programming such as
JOVIAL, CORAL66 and RTL/2 the support for the above process states,
and the interprocess communication, was undertaken by an underlying
operating system. Modern languages do not require any such support;
however the compiler will generate a run-time system that will manage the
queues of suspended and executable processes. If at any time there are not
enough processors for the executable processes (this will usually be the
case) then the run-time system will need to schedule the executable work.
When moving from running one process to running another, the run-time
system must also cater for state changes, which it does using a procedure
known as a context switch. This will involve storing the volatile environ-
ment of the current running process and restoring the corresponding
environment of the process that is due to run next.

1.2 Occam and the transputer

Although occam is an abstract programming language its development has
been closely associated with that of the transputer. (Both have been
designed by INMOS.) The transputer is a programmable VLSI device
containing communication links for point-to-point inter-transputer connec-
tions. Occam’s model of concurrency has been strongly influenced by the
need to provide the same programming techniques on a single transputer
and a network of transputers. This enables a programmer to be, essen-
tially, unconcerned about the final implementation scheme chosen for the
program. It can be defined, coded and verified prior to a decision being
made on configuration. Such a decision (known as post-fragmentation)
may favour running on a low-cost single transputer or a high performance
multi-transputer system.

The transputer’s effect on the design of occam is nevertheless minor
when compared with occam’s influence over the hardware development.
Although there is a minimal instruction set (see Chapter 7) the lowest level
at which the transputer will normally be programmed is occam; it is an
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occam machine. In particular, many of the functions of the run-time system
are supported, directly, in the hardware. Process suspension, scheduling,
queue manipulation and context switching are all undertaken efficiently by
the transputer. This should make it possible to implement time-critical
applications in occam on the transputer.

In terms of a concurrent programming language the link between
occam and the transputer should not be considered too strongly. Occam is
not a peculiar assembly language for an esoteric piece of hardware. It is a
" general purpose language based on sound theoretical study. This book is
about occam, not the transputer. The transputer is considered here only as
an example of how occam can be implemented. This is a significant topic
when compared with languages like Ada where an efficient implemen-
tation has been difficult to obtain (Burns, 1985). The execution of occam
on a transputer network is considered in Chapter 8.

1.3 The uses of occam

Concurrent programming languages, in general, have two broad classifi-
cations of use.

1. They provide for the direct programming of applications with concur-
rent objects.

2. They provide for the direct representation of objects which will
execute in parallel on multiprocessor hardware.

The first classification is concerned, primarily, with embedded systems,
where the computer (hardware and software) forms part of some larger
engineering system. The computer will monitor, and probably control, the
behaviour of this larger system. It does this by exchanging data with its
environment. A typical engineering system will have a number of distinct
devices that exist ‘in parallel’. If the software of the computer system is
written in a sequential language then the mapping of the family of device
controllers onto a sequential program is unnatural, and therefore error-
prone, difficult to maintain and unreliable. With a concurrent pro-
gramming language the parallel objects of the environment can be coupled
with processes in the software. Programs are easier to write and have
increased expressive power. Even if the execution of this program takes
place on a single processor (i.e. pseudo-parallel execution) the benefits in
terms of the software engineering are significant.

By comparison, the second class of application is concerned with
execution. It is understandably difficult for a compiler to generate code,
that can be executed sensibly, in parallel, from a sequential program.
Algorithms that can exploit multiprocessor execution must be represented
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(and implemented) in a language that will allow for the expression of
parallelism. The resulting programs are very different from their sequential
counterparts and may actually be inefficient if executed on a single
processor.

These two quite distinct uses of concurrent programming languages

- are not entirely complementary. The language SIMULA, for example, was
designed to cater for class one; as a result it uses a form of process
representation, known as coroutines, that cannot effectively be executed in
parallel. Only relatively recently have multiprocessor and multicomputer
architectures become feasible and therefore the needs of class two are now
beginning to be realized. Because of occam’s association with the tran-
sputer it has a clear role in the implementation of parallel algorithms.
Although this is not to the exclusion of the more traditional use of a
concurrent programming language.

Where both types of application come together is in the use of
multiprocessor embedded systems. In order to obtain the required per-
formance (in terms of speed and/or reliability), an increasing number of
real-time systems find it is necessary to use more than one processor.
Physical distribution within an embedded system is also becoming more
commonplace. Fortunately the processes defined to model external objects
are usually those that it is most sensible to execute in parallel.

Occam, and in many cases the transputer, has already been analysed
for its use in many different domains. Some of the envisaged uses are:
sorting and searching algorithms, fast fourier transforms, signal processing,
digital differential analyser, image processing, image display, high speed
logical inference engine, industrial control, process automation, simulation
and data acquisition. In addition many parallel algorithms are described in
terms of a systolic implementation (Kung, 1982), for example matrix
multiplication; occam is able to express such algorithms easily.

As well as its role as a concurrent programming language occam can
also be used as a normal high level language for system software. Indeed
INMOS have used occam to write a compiler for occam.



CHAPTER 2

Interprocess
Communication

The major difficulties associated with concurrent programming arise from
process interaction. Processes are rarely independent of each other and
there is a need to transfer data, and synchronize actions, between related
processes. The method by which interprocess communication is supported
within a programming language is the subject of much debate and many
different models exist (see Andrews and Schneider, 1983). This chapter
will consider some of these models and will describe the inherent problems
associated with interprocess communication. The motivation for the design
of occam will emerge from this discussion.

2.1 Synchronization and data communication

Data communication between processes, in general, is based upon either
shared variables or message passing. Shared variables are objects to which
two or more processes have access; by writing to, or reading from these
variables, data can be passed from one process to another. Message
passing involves the explicit exchange of data between the partners
involved in the communication. Associated with the act of data commu-
nication is the concept of process synchronization. Although processes
execute essentially independently, there are situations where it is necessary
for two or more processes to coordinate their executions. For example, in
order for one process to have received a message it is necessary for some
other process first to have sent that message. Synchronization can be
defined simply as one process possessing knowledge about the state of
another process. In most cases data communication will necessitate an act
of synchronization; indeed the occam model is based on a single primitive
(the rendezvous) which combines communication and synchronization.

With languages based on shared variables an important class of
synchronization is mutual exclusion. This is needed to stop simultaneous
access to shared objects (usually resources of the system) in situations
6
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important synchronization is condition synchronization; this is necessary
when a process wishes to perform an operation that can only sensibly, or
safely, be performed if another process has undertaken some action or is in
some defined state. Condition synchronization can be supported with
shared variables or message passing.

The use of buffers to decrease the coupling between active processes is
a common feature of systems written in a concurrent programming
language. They also illustrate well the forms of synchronization just
discussed. If the buffer itself, and its associated pointers, are open to
concurrent access then it will be necessary to provide mutual exclusion to
give a reliable implementation. Moreover two condition synchronizations
also apply to buffers; these are needed to stop a process reading from an
empty buffer or writing to a full one.

2.2 Shared variables

Data communication based on shared variables is available in many
languages, although as will be indicated later, occam does not employ this
mechanism other than in a very restricted form. The use of shared
variables is easy and usually efficient; however, they suffer from three
significant difficulties.

1. Although the processes have access to a shared variable the processors
on which they execute may not have shared memory.

2. Multiple-update difficulties necessitate that such variables be pro-
tected from uncontrolled access.

3. The use of shared variables complicates the formal model of the
semantics of the language and makes program verification much more
difficult.

In order to illustrate the second point a simple example will be given. Let X
be an integer variable that can be accessed by two processes, P1 and P2.
Consider the following assignment:

X=X+ 1
On most computers this assignment could be implemented in three stages.

1. Copy value of X into some register.
2. Add 1 to value on register.
3. Store value on register at the address for X.

If p1 and P2 both execute such an assignment then interference between the
two sets of actions can lead to an unexpected result. For example, let X be
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initially zero and let the interaction between 1 and P2 be such that the
following interleaving is executed:

P2 copies value of X(=0) into its register.
P1 copies value of X(=0) into its register.
P1 adds 1 to its register.
P1 stores value of Xx(=1).
P2 adds 1 to its register.

SO S o A

p2 stores value of X(=1).

Rather than obtain the value 2 the result is only 1.

This difficulty with shared variables has resulted in many different
language constructs being proposed. These include semaphores (Dijkstra,
1968 a, b), critical control regions (Hoare, 1972; Brinch Hansen, 1972,
1973 a, 1981) and monitors (Dijkstra, 1968 b; Brinch Hansen, 1973 b;
Hoare, 1974). Occam allows read only access to shared variables and has
thereby removed one of the most contentious areas of concurrent pro-
gramming.

2.3 Models of message passing

If shared variables are not to be used then a language must employ
message passing. One process will SEND a message, another process will HALT
for it to arrive. Surprisingly the definition of these SEND and WAIT commands
can be based on a variety of independent factors leading to many different
models of these message passing primitives.

The first and most significant factor concerns the behaviour of the
process that executes the Sendo. If this process is delayed until the
corresponding WAIT is executed then the message passing is said to be
synchronous. Alternatively, if the SEND process continues executing arbitra-
rily then the communication is termed asynchronous. The drawback with
the asynchronous method is that the receiving process cannot know
anything about the present state of the calling process; it only has
information on some previous state. Indeed it is even possible that the
calling process has terminated before its message is read. In addition, the
calling process does not know, directly, if the message sent has ever been
received.

Where a reply message is generated it is possible for the process
executing a synchronous SEND to be delayed further until this reply is
received. This structure, known as remote invocation, is used in Ada
(Burns, et al., 1987).

Another important issue in the design of a message based pro-
gramming language is how destinations and sources are designated. The
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simplest form is for unique names to be given to all processes in the system;
a SEND command will then directly name the destination processes:

SEND <message> T0 <process—name>
A symmetric form for the receiving process would be:
WAIT <message> FROM <process—name>

This symmetric form requires the receiver to know the name of any process
liable to send it a message. By comparison an asymmetric form may be
used if the receiver is only interested in the existence of a wassage rather
than from where it came:

WAIT <message>

This asymmetric form is particularly useful when the nature of the
relationship between the two processes fits the client/server paradigm. The
server process renders some utility to any client process that requires it
(though usually only one client at a time). Clearly the client must name the
server when sending a request message but the server need not know the
identity of the caller unless a reply message must be sent.

Where the unique naming of all processes is inappropriate a language
may define intermediaries (usually called mailboxes or channels) that are
named by both partners in the communication.

SEND <message> TO <mailbox>
WAIT <message> FROM <mailbox>

Again there are a number of forms that a mailbox may take; a single
mailbox could be defined to be used by many readers and many writers,
one reader and many writers or one reader and one writer. Moreover it
may be structured to pass information in both directions or in only one.
Finally the message itself could be complex like a structured data type or
simple such as a 16-bit word.

With all of these message structures the receiving process, by exe-
cuting a WAIT, commits itself to the synchronization and will be suspen-
ded if there is no message immediately available. This is, in general, too
restrictive; the receiving process may wish to choose between a number of
possible message sources. Within this structure it may also wish, tempo-
rarily, to restrict the sources over which it wishes to exercise this choice.
These two properties lead to a language structure in which a process selects
one of a set of alternative input messages, each of which may be guarded to
impose a condition synchronization. For example, if the buffer process
mentioned earlier communicated with its clients via messages then guards
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could be used to inhibit the processing of PLACE messages when the buffer is
full or a TAKE message when it is empty. During normal operation (i.e. when
the buffer is neither empty nor full) the buffer process will deal with either
PLACE or TAKE messages depending on which is outstanding.

2.4 The occam channel

The above section has illustrated the wide range of message passing models
that it is possible to construct when designing a language that is not going
to base its data communication on shared variables. Occam uses a single
straightforward structure that encompasses both ease of programming and
ease of implementation. Following the design of CSP, a synchronous
communication method (the rendezvous) was chosen that combines, in a
single primitive, the needs of data communication and synchronization.
This is a logical model to choose as it is arguable that communication
without synchronization is rarely useful and that synchronization must,
conceptually, imply some form of communication.

Occam’s rendezvous is built upon the use of an intermediary which is
known as a channel. Two factors have particularly influenced this choice.

1. Occam incorporates an exhaustive view of concurrency, programs
consist of a large number of processes and it would be inconvenient to
have to name them all. Indirect naming allows processes to be
anonymous.

2. Modifications to occam programs are easier to accommodate if the
communication between processes takes place via an explicitly defined
intermediary.

The channel is unidirectional and can only be used by one calling process
and one called process. Other characteristics of the channel have also been
influenced by the need to associate a channel with a link between adjacent
transputers.

The commands for reading and writing to a channel have a simple (if
somewhat terse) syntactical form. To write to a channel ch the value
contained in the variable X the following simple process is executed:

ch 1 X

The symbol ! indicates output.
To read from this channel (in another process) into a variable Y
requires the execution of:

¢ch 7Y

Here, the symbol ? is synonymous with input.
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As the communication is synchronous, the first process to execute one
of the above commands will be suspended until the other process ‘catches
up’. When and only when both processes are ready to communicate will data
pass from X to Y. Both processes will then proceed, independently and
concurrently.

It was indicated earlier that with a message-based communication
system it is necessary to provide a command that will allow a server process
to make a guarded choice between a number of possible communication
sources. This command in occam is known as the ALT statement and is
discussed in Section 3.6. The implementation of a channel either on a single
processor or between processors is considered in Chapter 8.

2.5 Deadlocks and indefinite postponements

Before proceeding to consider the occam language in detail it is necessary to
discuss some other concepts that affect interprocess communication. These
concern the behaviour of the system once it is executing. The most serious
condition to arise in a working system is deadlock. This occurs when a group
of processes is in a state in which it is impossible for any of them to proceed.
Consider two occam processes P1 and P2 that wish to exchange some data; let
chant and chan2 be two channels. The following code will work correctly:

P1 P2
chanl ! A chanl 7 X
chan2 7 B chan2 'Y

For example, assume that 1 reaches this code before p2; it will be delayed by
attempting to write to chan1. When P2 arrives it will read from chant (thereby
freeing P1) and become suspended on the output action on chan2. P1 will
proceed to read from chan2 and in doing so P2 will become executable again.
The data transfer is complete (A to x and Y to 8) and both processes are active.

However the following will inevitably lead to both processes being
suspended indefinitely:

P1 P2
chant ! A chan2 'Y
chan2 7 B chant 7 X

P1 cannot proceed until P2 has read from chan1; P2 cannot do this until it has
written to chan2, which it cannot do until P1 has read from chan2.

The testing of software rarely removes other than the most obvious
deadlocks; they can occur infrequently but with devastating results. It is not
practicable to design a concurrent program language in which deadlocks are
impossible to construct nor is it likely that compilers will be intelligent
enough to find them. It is thus necessary for the designers of a program to
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illustrate, or prove, that the possibility of deadlock has been removed from
their software. Various design methods can assist in this task. In particular
CSP (Hoare, 1985) is a formalism that can be used to prove absence (or
detect presence) of potential deadlock.

With deadlock all affected processes are suspended indefinitely. A
similarly acute condition is where a collection of processes are inhibited
from proceeding but are still executing. This situation is known as livelock.
A typical example would be a collection of interacting processes stuck in
loops from which they cannot proceed but in which they are doing no
useful work.

A less severe, though still significant, condition is indefinite
postponement (sometimes called lockout or starvation). This is where a
process, although it is able to proceed, finds that it is not actually doing so.
For example, if processes are given priorities then a low priority process
may never gain access to a busy resource. Even if the postponement is not
indefinite, but merely indeterminate, making assertions about the pro-
gram’s behaviour may still be impossible.

An alternative way of looking at indefinite postponement is to consider
the inverse property. ‘A system of processes is said to possess liveness if all
requests made by processes are eventually met. A stronger characteristic
would be fairness, but it is difficult to give a precise meaning to this.
Structures that use a first-in, first-out queue or a round-robin algorithm can
be considered to be fair. It is useful if the run-time system that supports the
concurrent execution of processes implements a fair scheduling algorithm,
at least at each priority level.



CHAPTER 3
Occam Processes

The basic model for an occam program is a network of communicating
processes. Communication is via defined channels with each process within
the program performing a sequence of actions which may proceed indefi-
nitely. If a process has a finite existence then it will eventually either
terminate (the normal course) or sT0P (this usually signifies an error
condition). A process may contain other processes so that a hierarchical
structure is supported; indeed a complete occam program is considered, at
the topmost level, to be a single process.

Within the sequence of statements that a process performs, data will
be manipulated. Occam supports a number of data types; discussion of
these is, however, postponed until the next chapter so that attention can
be focused here on the structure of an occam program. In order to give
example programs a correct form, integer and Boolean variables,
constants and expressions will be used where necessary. These are
defined as follows:

INT i,j,k: =—-—integer variables

BOOL finished: ~—-— Boolean variable

VAL INT Top IS 10: ~- integer constant Top
i+ —-— integer expression

i>j ~~— Boolean expression

Each statement in a program normally occupies a single line. If it is
necessary to continue a statement on a second (or subsequent) line then
the line must be broken after an expression operator (or similar) and the
new line must be indented by at least as much as the first one. Program
comments are introduced by the character pair -, they are terminated by
the end of that line. '

At any instant a typical occam program will have a number of
processes that could execute simultaneously. In recognition of this inde-
pendent relationship we say that the processes are concurrent and it is

13
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useful, conceptually, to visualize each process as having its own logical
processor. In reality many processes will be sharing each available
processor, but this knowledge rarely impinges itself upon the software
developer. As was discussed in the previous chapter all communication
between processes must use channels as intermediaries. It is however
acceptable for two or more processes to reference a constant or a variable
as long as no process attempts to update this variable. In some implemen-
tations even this read only facility may be denied if the processes are
destined to execute on different processors. This is one of the few
situations in which it is necessary during software design to be aware of the
likely final distribution of the system. The maintenance of programs moved
from one implementation to another may find this restriction significant,
although the existence of formal transformation techniques may lessen this
difficulty (see Chapter 10).

An occam process can take many different forms ranging from a
complete program to a single simple assignment. The following classifi-
cation describes the process types found in general use:

@ primitive process,

e block, ‘

@ constructor,

e procedure instance (see Chapter 6).

This description of occam processes is analogous to viewing, say, an Ada
program as being made up of simple statements, compound statements,
blocks, control and while statements, and procedure calls.

3.1 Occam names

Before consideration of occam processes it is necessary to discuss, briefly,
the basic syntactical structure of occam code. A name in occam consists of
a sequence of alphabetic characters, decimal digits and dots (.); the first
symbol must be an alphabetic character. The use of dot helps to improve
readability; examples of valid occamn names are:

Maximum.Value
Start.Position
Input.Channel
First.Time.Element
SET.VALUE

clock

in1

fred.42
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There is a style convention amongst occam programmers to use an upper
case letter at the beginning of each word that makes up a name. The
alphabetic characters include both the upper case (A...Z) and lower case
(a...z) sequences. Contained within the full occam character set are the
usual special characters:

PRy, - ;=000
An implementation may also include other characters for use in strings and
character constants. Certain unprintable ASCII characters are accessed via

the meta-character asterisk:

*¢ carriage return

*n  newline
*t horizontal tab
*s  space

*' quotation mark
*" double quotation mark
#* asterisk

All names in occam are case sensitive; therefore FREd is a different
object from Fred and they could both exist in the same program, although
this is not recommended. Reserved words (see Appendix A for a complete
list) have to be in upper case.

3.2 Primitive processes

Occam supports five primitive processes: ST0P, SKIP, assignment, input and
output. $T0P is a process that has no action but which never terminates. Its
effect therefore is to inhibit any parent process from continuing. This
action is clearly quite drastic and a process will usually only execute a $T0P
in recognition of some error condition. Some program structures also
default to sT0P when they are used erroneously (for example numerical
overflow when evaluating an expression).

The sk1P process is the inverse of sT0p although it also has no effect.
SKIP is a process that is always ready to execute and which terminates
immediately. It is the null process and is used with certain syntactical forms
to indicate, explicitly, that no action is required.

An assignment in occam has the form:

Vize
where V is a variable and e is an expression of the same type. It is important

to appreciate that this familiar assignment is viewed, in occam, as a process
in its own right. Hence it is pertinent to ask when does it terminate? An
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expression is a collection of variables, constants, operators and function
calls. Functions are however restricted in structure; they cannot have
side-effects and cannot give rise to internal processes. The process that
executes an assignment cannot therefore be delayed and will normally
terminate immediately, although, as mentioned above, an error condition
may force the assignment process to $T0P.

One of the novel and important features of occam is that it views
communication at the same primitive level as assignment. The occam
channel was described in the previous chapter; the symbol ? denotes input
and ! output:

ch 1e -= gutput
¢ch 72V -— input

where ch is a channel, e is again an expression and V is a variable (the
variable and the expression being of the same type). As the message
passing is synchronized the output process will only terminate when there
is an associated input process acting on the same channel. (Similarly, input
will only terminate when there is an output.) The effect of this rendezvous
is to have executed:

Vi:i=e

where V is in one process and e in another. It is thus appropriate to classify
assignment, input and output together.

The discerning reader will have noticed that there are no semicolons
acting as either statement terminators or statement separators. Each line of
an occam program can contain only one statement (process); it must
however start in the correct column (see below). If a statement must
continue onto the following line then it may do so as long as it starts at a
column position equal or to the right of the previous line.

3.3 Blocks and channels

A block process is a specification followed by a process. This recursive
definition provides the usual block structure in which any number of
objects can be declared prior to an area of the program in which these
objects are used. Blocks may be contained within biocks and the usual
scope rules apply (i.e. an inner declaration hides an outer one for the same
name). It is however always possible to substitute new names into a
program so that no single name is specified more than once. If this has been
done the program is said to have a canonical form.

The only object declarations of interest in this chapter are the
channels. These are specified by placing a list of names after the
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specification of the channel type; the list is terminated by a colon (as are all
declarations), for example:

CHAN OF P C:
CHAN OF P C1,C2,primes,print:

The clause P in these declarations is the protocol associated with the use of
these channels. These indicate the type of data that can use that channel; a
full description of protocols is given in Chapter 5. The simplest protocol
involves the passing of single integer values; this will be the form assumed
in this chapter. A channel ¢ with this protocol is defined as follows:

CHAN OF INT C:

A vector of channels is defined by stating the size of the array in square
brackets:

[32ICHAN OF INT €,0UT:

This declares two vectors both having 32-channel elements; these elements
are numbered from zero:

c[ol1 !'a+b ~=gutput a + b through channel CLO]

As processes in occam are not named it is impossible to specify which two
processes may use any defined channel. Usage will therefore complete a
channel’s specification and a compiler is able to recognize and reject
misuse — i.e. more than one process using the channel for input (or output).

The occam rendezvous is a single primitive that combines synchroni-
zation and data communication. In the situation where only synchroni-
zation is required a dummy piece of data must still be communicated. This
could lead to confusion for someone reading the program at a later date. A
useful program idiom to apply in these circumstances is to input a constant
of the name Any and to output to a variable also of that name:

C ! Any
¢ ? Any

If this convention is followed it will be clear when a synchronization is
being used in which the data communicated is irrelevant.

In Chapter 9 the methods by which an occam program interacts with its
environment are described. However, for readers who have access to an
occam system and are developing code concurrently with reading this book
(in order to consolidate their understanding!) it is worth noting here how
an occam program communicates with a keyboard and screen. In keeping
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with ‘most high level languages the details of I/O are implementation
dependent. The general model is of certain channels linking the program
with its environment. One such channel may enable an output process to
pass characters to the screen. Another channel could be used to read
characters from a keyboard. All such channels have the property that,
within the program, they are either written to (and not read from) or read
from (and not written to). They are defined by placing the channel at a
particular location:

CHAN OF INT Keyboard:
PLACE Keyboard AT 2:
CHAN OF ANY Screen:
PLACE Screen AT 1:

Note, the protocol given with these channels is INT for keyboard (the value
obtained is the ASCII representation of the character typed) and AnY for
screen. The use of ‘type’ ANY is described in Chapter 5.

The value after the AT is implementation dependent; the names
.chosen, Keyboard and Screen, are not significant (merely appropriate). On
some implementations the definition of these channels will have been done
by the development environment. Predefined procedures that use these
channels for outputting integers, characters, reals, etc. may also be
supported.

Finally in this section, the special TIMER ‘channels’ will be introduced.
These return the value of the local real-time clock. A TIHER is declared in
the normal way (for a channel):

TIMER Big.Ben:

Any number of TIMERs can be defined but each one is restricted to the use of
only one process.

A TIMER has the characteristic that it is always ready to output (i.e. a
process cannot be delayed by inputting from a TIMER). Obviously only read
actions on TIMERs are allowed:

Big.Ben 7 Time

The meaning of the value returned from a TIMER is implementation
dependent. It is not in the form of a clock giving time in hours, seconds or
microseconds; rather it is a simple integer (INT) value that is incremented
regularly by the host hardware.

In order to delay a process until some time, in the future, the following
structure is provided:

Big.Ben ? AFTER T
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The process that executes this action on the TIMER Big.Ben will be delayed
until the value of the real-time clock is greater or equal to 1. That is, T is an
absolute value not a relative time period from the present. Examples of the
use of this delay facility will be given later when the necessary data types
and operators have been discussed.

The time that a process is delayed for is, inevitably, only approximate.
It cannot be less than required but it could be more. For example if two
processes, running on the same processor, both delay to the same time in
the future then clearly only one can be actually woken up at that time. The
other must be executed later. Alternatively they may both be further
delayed due to the scheduling algorithm used by the implementation. To
emphasize this necessary lack of precision when delaying a process the
reserved word AFTER is used in the syntax.

3.4 Constructors

Constructors provide the glue for grouping together primitive processes.
Five distinct constructors are provided: SEQ, PAR, WHILE, IF and ALT. With
each of these (apart from WHILE) a replicator can be attached to give an
extra dimension to the structure. SEQ, WHILE and If are familiar high level
language features and they will be discussed first in this section. Then PAR,
which enables concurrent processes to be defined, and ALT will be con-
sidered. '

3.4.1 SEQ

seq provides for the sequential execution of a collection of processes:

SEQ
A= 4 —— for some integer A
B = At 42 ~- for some integer B
out ! B ~— for some channel out

The collection can be of any size and is expressed as one subprocess per
line beginning in the column under the @ in Seq. There is no need to indicate
explicitly the end of the sea construct, a change in the indentation of the
program (to the left) is interpreted as the end. Each subprocess within the
construct must terminate before the next process can execute. The SEq is
itself a process that will terminate when and only when the last subprocess
has terminated.

The syntax for a $Eq can be expressed formally as follows (a complete
description of occam’s syntax is given in Appendix B).

sequence = SEQ
{process}
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The notation {process} means ‘a list of zero or more processes on separate
lines’. We have already described the different types of processes available
in occam:

process = SKIP
| sTop -
| action
| construction
| block
| instance == of PROC
action = assignment
| input
| output
block = specification
scope
scope = process

Specifications are dealt with in the next chapter.
As was indicated above a construction can have one of five forms

construction =  sequence
conditional
loop
parallel
alternation

3.4.2 WHILE

To execute a sequence a number of times requires the use of a WHILE
constructor or a replicator. The WHILE constructor acts on a single process,
re-executing it each time the associated Boolean expression evaluates to
TRUE:

loop = WHILE Boolean
process

For examplé:

WHILE A<O
in 7 A

In this example a number of objects will be read down channel in until a
non-negative value is encountered; at this point the WHILE construct will
terminate. Note again that the subprocessis indicated by a two character
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position indent. To execute a sequence of statements within the while loop
it is necessary to combine a WHILE with a SEQ:

INT A:
WHILE A <= 1024
SEQ
in 7 A
A=A *xA
out ! A

Here the square of A is passed on to channel out until a value greater than
32 (or less than —32) is taken from in. With this code A must be tested prior
to the first value being input; this should be made secure by giving an initial
low value to A:

INT A:
SEQ
A= 0
WHILE A < 1024
SEQ
in 7 A
A= A% A
out ! A

Alternatively the statements could be rearranged so that the first input
takes place before the WHILE:

INT A:
SEQ
in 7 A
A=A %A
WHILE A < 1024
SEQ
out ! A
in 7 A
A= A %A
out ! A

Note that the last line is needed so that the final value is ‘passed on.
~ Formally the loop process can be defined (recursively) by the following
relationship, in which b is a Boolean expression and p is any occam process:

WHILE b =IF
P b
~ SEQ
P
WHILE b
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NOT b
SKIP

The IF process is considered below.

3.4.3 Replicators

A replicator is employed to duplicate a component process a number of
times. It can be used in conjunction with either a SEq, PAR, IF or ALT
constructor and has the general form:

replicator = name = base FOR count
base = expression
count = expression

where name is an INT variable defined by the replicator; base is the initial value
of this variable and count is the number of times the replicator is applied. (It
follows that base and count must be of type INT.) With each replication the
variable is given a new value: base, base + 1, base +2, ..., base + count — 1,

The use of the replicator with a ste provides the usual “for’ loop found in
most conventional languages. For example the following code transmits the
integers 0, 1, 2, ..., 9 down channel (NT:

SEQ i=0 FOR 10
CNT !

A replicated $Ea can only be applied on a single subprocess, to execute a
collection of subprocesses requires a further constructor:

SEQ
total := 0
SEQ i =1 FOR N
SEQ
CNT 7 temp
total := total + temp
SUM ! total

Here the code outputs through channel sut the sum of the first N integers read
down channel CNT. ’

If the count value is initially zero then the replicated SEe becomes
equivalent to sKIP. A negative value for count is invalid.

The usefulness of replicators is that they reduce the size of programs;
they do not however introduce new functionality to the language. A
replicator can always be expanded (i.e. removed) to produce a longer but
equivalent occam program.
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However, programmers should resist the temptation to put

TRUE
SKIP

at the end of all 1 constructs. Only when it is needed should it be used.
The following code changes the pattern of lights at a British traffic signal.
Boolean variables RED, GREEN and AMBER are used to represent the states of
the lights. The channels R, ¢ and A control the lights and the constants 0FF
and ON give appropriate control signals.

IF
RED AND (NOT AMBER) AND (NOT GREEN)
SEQ
Al ooON
AMBER := TRUE
RED AND AMBER AND (NOT GREEN)
SEQ
R ! OFF
A ! OFF
6! ON
RED := FALSE
AMBER := FALSE
" GREEN := TRUE
GREEN AND (NOT RED) AND (NOT AMBER)
SEQ
G ! OFF
A ! ON
GREEN := FALSE
AMBER := TRUE
AMBER AND (NOT RED) AND (NOT GREEN)
SEQ
A ! OFF
R ! ON
AMBER := FALSE

RED := TRUE

Note, any other combination of RED, GREEN and AMBER is an incorrect state
and the process will sTop. This, in effect, will result in the program
terminating. An implementation may support some debugging facilities
that will allow the programmer to locate the actual line of the program
where the $T0P was encountered.

The syntax for the conditional constructor is given by:

conditional = IF
{choice}
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choice = guarded choice
| conditional

guarded choice = boolean
process

This indicates that a branch of an If constructor can itself be a conditional.
The use of this nested structure is described later (Section 3.6.5).

Formally, the semantics of the If statement can be described as
follows. Let the IF process (with n branches) be represented as:

n
IF biPi
i=1

where bi is a Boolean expression, and pi is any occam process.
Then

where NOT(b1) AND NOT(b2) AND ... AND NOT(bj-1) AND bj, and

n
IF biPi = STOP
i=1

where NOT(b1) AND NOT(b2) AND ... AND NOT(bnm). . :

In these relationships = means equivalent (i.e. the two sides of the
relationship have the same effect).

A common form for an If constructor is a collection of possible actions
with the actual one to be chosen being dependent on the value of some
variable or simple expression:

IF
I

N o H v B

where P, @ and R are arbitrary processes. Rather than code this structure as
an IF process, occam (in common with many other languages) supports a
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casE construct. The use of a CASE process is not only a more logical means of
expressing this requirement but it can be implemented much more
efficiently. With the occam CASE the above code would be expressed as:

CASE I

_ If, for example, this CASE process is executed with I having the value 3 then Ris

executed immediately. With the ‘equivalent’ IF process, first I=1is evaluated

(to FaLSE) then 1=2 (again to FALSE) and finally I =3 (TRUE) before Ris executed.
The general form for the CASE process is defined by:

process = CASE selector
{selection}

selection =  expression
process
| ELSE
process

selector = expression

On execution of the ¢ASE, selector (which must be of type INT) is evaluated
and its value is used to select one of the component selections. If the value
of the selector is the same as that of one of the selections then the
associated process is executed. The selections are required to have distinct
values. In the situation where no selection has the value of the selector
then the process following the £L5E is executed. A CASE process can have at
most one ELSE part but may have none. If there is no ELSE selection and the
value of the selector is such that no actual selection is appropriate (i.e.
none has equal value), then the CASE behaves like sTop.

Note that the ¢ASE structure in occam is simpler than that found in most
other languages. For example a selection cannot have more than one value
or a range.

Replicators can be used with an IF process but this is less common. In
the following code an object is read from channel in and is then sent out on
one of a number of channels; the one chosen being determined by a local
variable V:

SEQ
in 7 temp
-— calculate V
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IF
V=1
OUTC1] ! temp
V=2
QUTL2] ! temp
V=3

0UTL31 | temp

If the code could be constructed in this form, then the following syntax is
equivalent but more concise:

SEQ
in 7 temp
~=- calculate V
IFi=1FO0R3
i=y
OUTLi1 ! temp

Clearly if a zero replicator is applied the If becomes equivalent to sToP (if
there are no Boolean expressions none of them can evaluate true).

3.5 PAR constructor

So far processes have been introduced but have only been executed
sequentially. In order to indicate that two, or more, processes are
concurrent the PAR constructor must be used:

parallel = PAR
{process}

All subprocesses of a PAR must either be completely independent of each
other or interact by using channels and the rendezvous. As an example of
the use of PAR, consider the following two element buffer:

CHAN OF INT in, out, middle:
PAR
INT X2
WHILE TRUE
SEQ
in 2 X
niddle ! X
INT X:
WHILE TRUE
SEQ
middle 7 X
out ! X
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in middle out

Figure 3.1 A pipeline of two processes.

The program can be usefully represented as a diagram, see Figure 3.1

Within this buffer program two processes are executing concurrently;
they interact by use of the channel niddle. The buffer would be used, in
other parallel processes, by writing to channel in and reading from out.

Both elements of this PAR have a similar form; each consists of a
non-terminating loop (acting on a Stq) and a local variable. The use of a
procedure (see Chapter 6) would enable both of these processes to be
constructed from a single procedure.

From a program development standpoint PAR has two main uses;
firstly, as in the above example, a PAR can be used to express concurrency.
This could be in recognition of parallel activities in the application, or to
indicate candidates for true parallel execution, or both. An occam program
often takes the form of, at the topmost level, a PAR process.

The second use of a PAR is to introduce non-determinacy into the
program. This is again a recognition of concurrency but at a lower level,
and for a somewhat different reason. In an earlier section an If process was
given for changing the pattern of lights at a traffic signal. Within this IF
construct the following sequence was used:

SEQ
R ! OFF
Al OFF
6 ! ON
RED := FALSE
AMBER := FALSE
= TRUE

GREEN :

However the computation itself is not a sequential one, and as side-effects
cannot be generated in occam the six subprocesses are clearly independent
of each other. The sta can therefore be replaced by a PAR:

PAR
R ! OFF
AL OFF
G ! ON .
RED := FALSE

AMBER := FALSE
GREEN := TRUE
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The use of PAR in these circumstances has three advantages:

1. It more accurately reflects the properties of the program.

2. It allows the subprocesses to be rearranged and thus enables program
transformations to be applied (see Chapter 10).

3. It allows channel operations to be executed in an order determined by
the dynamics of the program’s execution rather than by a predefined
and meaningless sequence.

This last point is the most significant. The assignment processes:

RED := FALSE
AMBER := FALSE
GREEN := TRUE

although they are independent, will all terminate immediately (i.e. they
cannot lead to suspension) and therefore there is little advantage in
explicitly executing them concurrently. Indeed as the implementation of a
PAR (see Chapter 8) is more costly than that of a sEa there are good reasons for
not using a PAR. This is not the case with the write operations on the channels:

R 1 OFF
AL OFF
6! oN

for it is possible to have a program interleaving in which the processes that
are reading from A and 6 are ready to read but the reader of & is not. With a
SEQ constructor all processes will be delayed waiting for this read of R. By
comparison, with a PAR constructor the three channel writes will be taken to
be concurrent processes and thus the reads on A and ¢ will take place prior to
the action on R. (It should perhaps be noted that with a real traffic lights
system there are advantages in having all the lights change at the same time.)

This introduction of non-determinacy, in the order in which processes
are executed, illustrates that the use of the PAR constructor is not restricted to
designating Ob] ects for true parallel execution. Itisa programming construct
that has an important role in all levels of the program

3.5.1 Termination of a PAR process

As well as indicating that its subprocesses are concurrent, PAR is again a
process in its own right. It is therefore appropriate to ask when will it
terminate. A PAR process terminates when and only when all of its
constituent subprocesses terminate. If the PAR is at the topmost level of an
industrial control program then it is common for its subprocesses to have
infinite loops within them. They do not terminate, therefore neither does the
PAR process nor the program itself.
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On the other hand if a PAR process is designed to terminate then the
programmer must make sure that all internal processes do also. If only one
process remains then the PAR will be prohibited from finishing. A common
programming error is to terminate some subprocesses before their neigh-
bours have completed communicating with them. This leaves one process
trying to write to (or read from) a channel when the associated process that
should read (or write) has terminated. The result is a collection of suspended
processes, none of which can become e¢xecutable again. The run-time system
will find that the PAR process cannot terminate but that none of the internal
processes are executable. This is a deadlock and the program will fail.

Particular attention should be given to the design of support processes
such as buffer or resource controllers. The decision to close down a section
of the program must be communicated to all of these agents so that they can
themselves terminate and allow the execution of the program to proceed.

3.5.2 PAR replicator

An occam program can be given a concise format if a number of similar
processes can be generated, in one go, by the combination of a PAR
constructor and a replicator. For example a ten element buffer (see Figure
3.2) can be expressed as:

VAL INT N IS 10:
[N + 1JCHAN OF INT C:
PAR )
PAR P =0 FOR N
INT BufferElement:
WHILE TRUE
SEQ
CLPI 7 BufferElement
CCP + 1] ! BufferElement

The replicator sets up N $EQ processes; by using a one dimensional array of
channels the internal communications are catered for. Other processes,
that are in parallel with this PAR replicator, could put integers on this buffer
by writing to ¢[01 or extract integers by reading from cINI.

The replicated PAR, like the replicated sEq, can only be applied to a
single subprocess. If it is desirable to act upon a group of processes (SEq or
pAR) then this must be stated explicitly:

ctol ¢l (re2l (L3] CINT

Figure 3.2 A general pipeline of processes.
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PAR 1=0 FOR N
PAR

For example if p(I) and q(1) are two occam processes whose actions
depend upon the value of I then the following code:

PAR
p(1
p(2)
p(3)
q(1)
q(2)
q(3)

could be written more concisely as

PAR' I =1 FOR 3
PAR
p(I)
g(I)

The termination of the replicated pAR is as one would expect (i.e. when all
replicated processes have terminated).

As this construction is an important one another example will be
given. A parallel equivalent to the usual bubble sort algorithm can be
obtained by defining a pipeline of N processes (for N numbers). To sort
into increasing order, each process handles two objects (integers in this
case) at a time and sends the larger value to its neighbour down the
pipeline. It then reads a new value from ‘upstream’ and repeats the action.
The integers are assumed to be positive and the value —1 is used to ‘flush’
the pipeline:

VAL INT FLUSH IS ~1:
VAL INT N I8 30:
[N + 1TICHAN OF INT C:
PAR
—-=— other processes
PARI =0FORN

INT X,Y:
SERQ
CCIJ 2 X —-= read first value
WHILE X <> FLUSH
SERQ

crIl1 2 y
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IF
X>Y
SEQ
clr + 11 !X
X =Y
TRUE
clr + 11 1y
CCI + 11 ! FLUSH ~=-—send on FLUSH value

With this code a sequence of up to N integers when written to ¢[0]
(followed by —1) will emerge at ¢IN] in a sorted order.

3.5.3 Process creation

When a PAR process is executed a number of subprocesses are created. With
a replicated AR the number of processes created is given by the second field
of the replicator. In order for the compiler to know how many processes
are contained within a program (so that memory allocations and queue
length calculations can be undertaken prior to execution) occam does not
allow dynamic process creation and thus restricts the second field of a
replicator, when used with a PAR, to an expression that can be calculated at
compile time. It often takes the form of a constant.

This restriction is, with some applications, significant. Its adverse
effect can however be mitigated if the maximum number of possible
processes is known at compile time. Consider a PAR replicator that receives
its count field value from a channel Start.value:

-— other processes
SEQ
Start.Value 72 N
PAR P =0 FOR N -=not valid
subprocess

If the maximum possible value of N is known (#AX) then the following is
correct occam and will have only a small run-time overhead even when N is
much smaller than KaX:

-~ other processes

INT N:
VAL INT MAX IS 100:
SEQ
Start.Value ? N
IF
N <= MAX
SKIP

PAR P = 0 FOR MAX -—valid
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IF
P <= N
subprocess
TRUE
SKIP

The maximum number of processes is always generated but those not
required (i.e. when P> N) are only SKIP processes that terminate immedi-
ately. As a run-time check, the value of N is compared with Max, if it is
higher the first IF process becomes equivalent to s70p and the process is
halted.

3.5.4 Priorities

The PAR constructor enables a number of concurrently executing processes
to be generated. How much relative processing time each of these
processes gets will depend on the scheduling algorithm employed by the
run-time system. It is therefore implementation dependent. In some
circumstances it is useful to indicate that some processes are more urgent
than others; this can be done by allocating priorities. A high priority
process will be given preference over a lower priority one if they are
executing on the same processor and the high priority process is exe-
cutable. ‘

Priorities are allocated in occam by a variant of the PAR constructor
called PRI PAR. Each component of a PRI PAR is given a different priority with
the textual order being used to indicate a decreasing priority level. A group
of processes can be given identical priority by grouping them together
within an inner PAR:

PRI PAR
P1 —=— highest priority
PAR
P2 =~ three processes
P3 -~ with middle
P4 —-=priority
P5 ~— lowest priority

With a normal computation the dependence between the processes means
that the use of a PRI PAR does not have a significant effect upon system
performance. If some processes are allocated more processor time then
others will, inevitably, have less and the complete system will behave much
as before. Where the PRI PAR is useful is in real-time systems where it is
necessary to respond quickly to some external event. By allocating the
highest priority to the process that must handle the response, the pro-
grammer will ensure that other processes will not be executed until the
real-time event is handled.
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As the run-time system must support distinct queues for each priority
level an implementation may limit the number of components that can be
contained in a PRI PAR. For example, on the transputer only two priority
levels are supported.

3.5.5 PLACED PAR

Once a program has been designed, developed and verified its final
execution may be assigned to a number of processors. Another variant of
the PAR constructor is used for this purpose. The PLACED PAR indicates that the
associated subprocesses are not only concurrent but they are to be
allocated to different processors and will therefore be truly parallel:

parallel =  PLACED PAR
{placement}
| PLACED PAR replicator
placement

placement = PROCESSOR expression
process

for example:

PLACED PAR
PROCESSOR 1
P1
PROCESSOR 2
P2

Where P1 and P2 are processes (possibly PAR or PRI PAR) and the numbers 1
and 2 are implementation dependent (expressions). A replicator may also
be applied to a pLACED PAR. Each of the available processors is assumed to
have a unique integer value. This mapping of processes to processors is
considered in more detail in Chapter 8.

3.6 ALT constructor

The PAR constructor allows for non-determinacy by enabling a collection of
subprocesses to be executed in whatever order is appropriate for that
particular execution of the program. It was mentioned in the previous
chapter that another form of non-determinacy is needed with message
based languages; this enables a process to choose between a number of
possible sources of message. Figure 3.3 illustrates a simple concentrator
process.
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1

Cout
W

Figure 3.3 A merge process.

Two sequences of objects, arriving down channels 1 and (2, are to be
merged into a single Cout channpel. With the constructors that have so far
been described this cannot be achieved in a flexible way. The ALT construc-
tor provides the necessary structure:

INT X:
WHILE TRUE
ALT
17X ~— alternative 1
Cout 1 X
€2 7 X - alternative 2
Cout | X

For each execution of the ALT, one (and only one) of the alternatives is
selected. The general form of the ALT is

ALT
61
P1
G2
P2

Gn
Pn

Where 6i is a guard and Pi is a subprocess. The simplest form for a guard is
an input process; if there is an object waiting to be input (i.e. there is
another process committed to writing to this ALT process) then the guard is
said to be ready. The execution of the ALT process involves picking a ready
guard, executing the input process of the guard and then executing the
associated subprocess. This subprocess can be arbitrarily complex. If there
is no ready guard then the ALT process will be suspended until there is one.
By contrast, if there is more than one ready guard then an arbitrary choice
is made between these ready guards.
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Arbitrary here means that the language definition does not specify
which algorithm an implementation should use. By implication a program
should not rely on any particular implementation method as the movement
of the program on to another system could result in the program behaving
incorrectly.

The alternative constructor is defined as follows:

alternation = ALT
{alternative}

alternative = guarded alternative
| alternation

guarded alternative = guard
process

3.6.1 Guards

Guards are used to avoid specific communications during the execution of
the ALT constructor. This is the main method of providing condition
synchronization in occam. The occam guard can take one of a number of
forms: ‘

guard = input
| Boolean & input

| Boolean & SKIP

For example:

chan 7 X —=— input guard

A > B & chan ? X -~ Boolean expression and input guard
A< B & SKIP —— effectively Boolean expression only
Time ? AFTER T —— timeout, Time being a TIMER

The guard is ready when the Boolean expression evaluates to TRUE and the
associated process can execute. With a sKIp this is immediate; with an input
process this is when there is an object to read (i.e. some other process is
waiting to output to that channel). Care should be taken when using the
skip form of the guard; if the associated Boolean expression (which must
be present but could be simply TRUE) evaluates TRUE then that alternative
could always be taken even when there are outstanding ready input guards.
Moreover if the ALT constructor is placed within a loop (as is common) the
existence of a permanently ready sKk1p alternative can lead to polling which
is wasteful of processor time.
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With the timeout form, the guard is ready when the timeout expires,
i.e. when the value of the local clock is greater than the expression 1. As its
name implies it is used to program situations where it is necessary to
recognize (and deal with) the non-appearance of data down a channel (or
collection of channels). For example the following code will wait a
thousand units of time for an input from channel ch. If no rendezvous takes
place within that time the program executes some error recovery pro-
cedure:

TIMER Clock:
SEQ
Clock 7 time
ALT
ch 7 Some.Variable
-=normal action
Clock ? AFTER time PLUS 1000
~= @rrOor recovery action

In this code the operator PLUS is used (rather than +) because it gives a
modulus result which is necessary with time expressions — see the next
chapter. The action of a timeout can be inhibited by combining it with a
Boolean expression in the guard:

Timeout.On & Time 7 AFTER T

3.6.2 Circular buffer

To illustrate the use of ALT processes (with guards) a simple buffer agent
will be considered. Buffers are a useful concurrent programming tool.
. They allow active processes in a pipeline to decouple their execution by
communicating via a buffer rather than directly. A common form for such
buffers is a circular or bounded buffer. The buffer is represented as a
vector (of appropriate data type) with two pointers. One pointer indicates
the next free slot on the buffer; the other points to the next object to be
taken from the buffer (see Figure 3.4).

BASE TOP

Figure 3.4 A FIFO buffer.
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With each PUT or GET operation on the buffer the associated pointers are
incremented; by using modular arithmetic the pointers wrap around the
top of the vector; hence the term circular buffer.

In order to code a circular buffer reliably in a concurrent programming
language two condition synchronizations must be implemented; it must not
be possible to 6ET from an empty buffer or PUT on to a full one.

PUT Buffer GET

Figure 3.5 A buffer process.

An occam buffer process (see Figure 3.5) should have an interface of two
channels (6ET and puT); however the following code which deals with GET
and PUT symmetrically (and is the natural way one would expect to
structure the code) is not correct:

CHAN OF INT PUT, GET:
PAR
VAL INT Buf.Size IS 32:
INT TOP, BASE, CONTENTS:
[Buf.SizelINT BUFFER:
SEQ
CONTENTS := 0
TOP := 0
BASE := 0
WHILE TRUE
ALT
CONTENTS < Buf.Size & PUT ? BUFFER [TOP]
SEQ
CONTENTS := CONTENTS + 1
TOP := (TOP + 1) REM Buf.Size
CONTENTS > 0 & GET ! Buffer [BASEl == not legal occam
SEQ
CONTENTS := CONTENTS = 1
BASE := (BASE + 1) REM Buf.Size

The first alternative has a guard which evaluates TRUE only when there is
room in the buffer for another object. This object is obtained by reading
from channel puT. If such an input is possible, and is chosen by the ALT, then
the CONTENTS and T0P variables are incremented.
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The problem with this code is that it contains an output operation in the
guard of the second alternative. This is not allowed in occam due to the
semantic difficulties that arise if both input and output operations on a single
channel are contained in guards in different ALT processes. If this were the
case then the choice of an alternative in one ALT process would have to
depend on the choice made in the other (and vice versa). This would cause
significant implementation difficulties particularly if the two ALT processes
were contained on different processors (Andrews and Schneider, 1983;
Buckley and Silberschatz, 1983; Francez Yemini, 1985).

A correct occam implementation of a circular buffer is obtained by
introducing another process and inverting the 6E7 communication with the
buffer (see Figure 3.6):

CHAN OF INT PUT, GET, Request, Reply:
PAR
VAL INT Buf.Size IS 32:
INT TOP, BASE, CONTENTS:
[Buf.SizeJINT BUFFER:
SERQ
CONTENTS := 0
TOP := 0
BASE := 0
INT Any:
WHILE TRUE
ALT
CONTENTS < Buf.Size & PUT 2 BUFFER [T0P]
SEQ '
CONTENTS := CONTENTS + 1
TOP := (TOP + 1) REM Buf.Size
CONTENTS > 0 & Request ? Any
SEQ
Reply ! BUFFERLBASE]
CONTENTS := CONTENTS - 1
BASE := (BASE + 1) REM Buf.Size
INT Temp: ~-single buffer process
VAL INT Any 1§ 0: —-— dummy value
WHILE TRUE
SERQ
Request ! Any
Reply 7 Temp
GET ! Temp

This is, in effect, a Buf.Size + 1 buffer as one element will be contained in
the single buffer process. To read from the buffer, the single element
process first indicates that it wishes to read (by synchronizing down channel
Request) and then actually reads via channel Reply. The client process is
however unaffected as it still obtains data via the 6eT channel.
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Request

T
i Buffer GET

fuss——

Figure 3.6 A programmable buffer process.

In the above occam program the interaction between the main buffer
and the single buffer process takes the form of a double rendezvous. This is
a common structure in occam programs; a process sends a request via one
channel and receives the reply on another:

Client Server
request ! data request 7 input
reply ? results

reply ! output

With the server process it may be necessary to wait for resources to be
released before the reply value can be sent.

Request/reply message couples in this form can be reliably coded in
occam because the client cannot ‘disappear’ between making the request
and receiving the reply. If occam provided an abort statement (whereby
one process can abort another) then the production of reliable algorithms
would be much more difficult. For instance if the client above was aborted
between the two rendezvous then the server would be deadlocked.

3.6.3 A proportional controller

In order to give another illustration of the use of the ALT constructor a
simple proportional controller will be considered (see Figure 3.7). Such a
controller reads input data and compares it with a desired value for that
data. If the two are not identical a new output signal is generated.

Tset
Hout
Tin

Figure 3.7 A controller process.
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The output value Hout is obtained from the input value Tin by the formula:
Hout := K(Tset = Tin)

where K is known as the proportional gain and Tset is the desired value of
Tin. For example T could be a temperature reading and Hout a heater
setting. If the input value is lower than that required the heater is turned
up; alternatively if the temperature is too high the heater is given a signal
that will turn it down. The code for such a controller could have the follow-
ing form (the definitions of the variables used are omitted for clarity):

SEQ
SET.VALUE ? Tset —-—read a Tset value to start with
WHILE TRUE
ALT
SET.VALUE ? Tset
SKIP
Treading ? Tin
H.VALUE ! K*(Tset — Tin)

Initially a value for Tset must be read from channel SET.VALUE; after this has
been obtained the controller process loops round either reading a new
value for Tset (in which case it does nothing more than take note of the new
value) or reading a value of Tin and then outputting a new Hout value down
channel H,VALUE.

With many controllers it is necessary to take remedial action if the
controlled device goes off-line. In the above code this would be signified by
a lack of values coming down Treading. A proportional controller with
timeout is illustrated in Figure 3.8.

Tset
e —3

Tin K
r——————>
lError

Figure 3.8 A controller process with error output.

Hout

The occam code is as follows:

TIMER clock:
VAL INT Any 1S 0: ~—~— dummy value
SEQ

clock ? Time

SET.VALUE 7 Tset

WHILE TRUE
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ALT
SET.VALUE ? Tset
SKIP
Treading ? Tin
SEQ

clock ? Time
H.VALUE ! K*(Tset = Tin)
clock ? AFTER Time PLUS TimeOut
SEQ
clock - ? Time
Error.Channel ! Any

Here the ALT process has three alternatives. The first merely gets a new
value of Tset, the second (which will be the normal action) reads a new Tin
value, outputs a new value down H.VALUE and resets the timeout by reading
from the clock. Although these two actions are independent they are
executed in a st because the clock input cannot lead to delay and hence
there would be no advantage in using a PAR. The third alternative in the ALT
is the timeout; the guard clock ? AFTER Time PLUS Tineout becomes ready when
the value on the TIMER is greater than Time PLUS Timeout. If this happens
before either of the other two guards becomes ready then the third
alternative will be taken. This will result in a synchronization down
the error channel and a new value of Time being obtained. If no further
data appears down Treading then the controller will synchronize down
Error.Channel at regular intervals (i.e. every Timeout).

Note that although the reading of a new value for Tset will terminate that
execution of the ALT (and thereby cancel the timeout even though no value
has appeared down Treading) the next time the ALT is executed the timeout
period will be shorter. For example if the timeout was 5 seconds and after 2
seconds a communication down SET.VALUE took place then when the ALT is
executed again the timeout value would be only 3 seconds (approximately).

A further refinement to the above program would be to add a ‘user
interface’ which could be used to enquire what the present Tin value is:

TIMER clock:

INT Any:

SEQ
clock ? Time
SET.VALUE 7?7 Tset

WHILE TRUE
ALT
SET.VALUE ? Tset
SKIP
Treading ? Tin
SEQ

clock ? Time
H.VALUE ! K*(Tset - Tin)
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will lead to the controller being suspended until the process that reads from
that channel is in a position to do so. If this read process is tardy then the
controller will remain suspended and will not be able to respond to a new,
possibly dangerous, reading of Tin.

To program asynchronous communication requires the introduction of
a buffer process. This concurrent process will take values from the
controller and make the most recent available to the reading (or client)
process. Both of these actions are synchronized but the overall effect is to
free the controller from waiting for the client process; it merely waits for
the responsive buffer. To illustrate the use of a buffer process consider the
control output given in the process above:

H.VALUE ! K¥(Tset — Tin)

The process that is acting as the device driver for the output device will
rendezvous (synchronously) with the controller using the same channel:

H.VALUE 7 New.Setting

By introducing two new channels Buffer.Get and Buffer.0ut, and reversing
the communication with the device driver (as was done with the circular
buffer), the buffer process can be constructed as follows:

INT Buffer.Value:
SEQ
H.VALUE ? Buffer.Value
INT Any:
WHILE TRUE
ALT
H.VALUE 7 Buffer.Value
SKIP
Buffer.Get ? Any
Buffer.Out ! Buffer.Value

Note that initially a value is read from H.VALUE into the buffer variable.
The client process, when it is in a position to read a new setting,
synchronizes down channel Buffer.Get and then reads from Buffer.Out:

VAL Any IS 0:

SEQ
.Buffer.Get ! Any
Buffer.Out ? New.Setting

As a consequence of this structure the client process will always get an up
to date value of Hout although it need not read every value generated by the
controller. It could however loop round continuously reading a value that
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does not change; to remove this possible busy loop a guard could be used in
the buffer to stop the ALT choosing to communicate on channel Buffer.Get
unless a new value was available:

BOOL New.Value: ——set to TRUE if a new value available
INT Buffer.Value:
SEQ
H.VALUE ? Buffer.Value
New.Value := TRUE
INT Any:
WHILE TRUE
ALT
H.VALUE ? Buffer.Value
New.Value := TRUE
New.Value & Buffer.Get ? Any
SEQ
Buffer.Out ! Buffer.Value
New.Value := FALSE

Care must however be taken with this structure to protect the client
process from being blocked if no new value is ever generated.

3.6.5 ALT replicator

The ALT constructor is often used to multiplex a number of input channels
on to one output channel or to code a server process that is receiving
requests via a number of input channels. If the input channels can be
represented as elements of a vector of channels, then a replicated ALT can
be used to give a concise syntactical form:

VAL INT Max IS 32:
[MaxICHAN OF INT Request:
PAR
WHILE TRUE
ALT I = 0 FOR Max
Requestl[I] ? temp
—--—some action

This is equivalent to the expanded form one obtains if the replicator is
removed:

VAL INT Max 1§ 32:
[Max]CHAN OF INT Request:
PAR
WHILE TRUE
ALT
Request[0] ? temp
—— some action



46 PROGRAMMING IN OCCAM 2

Request[1] ? temp
-~ same action
Request[2] ? temp
-- game action
Request[3] 7 temp
-~— game action

Request[311 ? temp
—-— gsame action

Care must be taken to make sure the ALT replicator has at least one
replication, otherwise the ALT will have no alternatives and is thus
equivalent to STOP.

Although the symmetric naming structure used in occam makes it
impossible to write general purpose server processes (because the number of
clients must be known beforehand) the use of a replicator with an ALT does
enable code that is only dependent upon a single constant to be re-used.

In some circumstances (for example those illustrated in Figure 3.9) an
ALT process may wish to choose between a single channel or one of a vector.

Vector .

Single channel

Figure 3.9 Merging a single channel with a vector of channels.

The vector can be accommodated with a replicator but this cannot also
handle the other single channel. To deal with this situation occam allows
one of the alternatives within an ALT constructor itself to be an ALT construc-
tor (see definition of alternation above):

'

ALT
ALT I =1 FOR Hax
Request[Il 7 t1
-=— gome action
SingleChannel 7 t2
-~ gome other action

All the alternatives, nested or otherwise, are given equal significance
within the outer ALT.
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This facility for allowing ALT constructors to be nested also applies to
the IF constructor.

3.6.6 PRIALT

We have already seen that if an ALT process has more than one ready guard
then the one chosen for execution is not defined in the language. This
enables an implementation to optimize how it executes the ALT construct.
Nevertheless, in a number of situations it is necessary to give preference to
certain communications. This can be achieved by using appropriate
Boolean expressions in the guards, but the code becomes inelegant. To
remove the need for such expressions occam provides a variant of the ALT
constructor which has a non-arbitrary algorithm:

PRL ALT
61
P1
G2
P2

Gn
Pn
The PRI ALT process behaves identically to. the normal ALT except in the
situation where there is more than one ready guard. In this event the ready
guard that is textually first is the one that is chosen. For example in the

proportion controller illustrated above it may be desirable to give priority
to a communication that is changing the set point:

WHILE TRUE
PRI ALT
SET.VALUE ? Tset
SKIP
Treading ? Tin
H.VALUE ! K * (Tset = Tin)

Similarly in the asynchronous buffer example priority should be given to
the H.VALUE read so that the controller is not blocked unnecessarily:

BOOL New.Value: —-— set to TRUE if a new value available
INT Buffer.Value:
SEQ

H.VALUE ? Buffer.Value

New.Value := TRUE

INT Any:

WHILE TRUE
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PRI ALT
H.VALUE ? Buffer.Value
New.Value := TRUE
New.Value & Buffer.Get ? Any
SEQ
Buffer.0ut ! Buffer.Value
New.Value := FALSE

As the algorithm used. to implement a normal ALT is arbitrary, an
implementation could use this textual order for both PRI ALT and ALT. A
programmer should have, however, a clear view as to the distinction
between the two. In particular it should be possible to rearrange the
alternatives within an ALT construct without significantly affecting the
behaviour of the program. The program should be invariant to the
ordering within ALT constructors. If this is not the case then there are
liveness problems that should be addressed directly. A PRI ALT can be
integrated within a nested ALT to implement algorithms such as:

WHILE TRUE
PRI ALY
SingleChannel 7 t2
SKIP
ALT I = 1 FOR SIZE
Requested[I] ? t1
Return ! t1 * t2

This code reads from a vector of channels, multiplies the readings by a
factor t2 and outputs the new value down channel Return. Preference is
given to a communication down SingleChannel as this is used to change the
value of t2.

There is one situation in which the behaviour of PRI ALT does not take
account of the textual order of the ready guards. This is when the PRIALT is
first executed with no ready guards (i.e. it is suspended) and then two
guards become ready simultaneously. In this case either of the guards is
chosen; the textual order is not significant. For example consider the
following code:

PRI ALT
A>08&ch?X
-—action
B>0&ch?yY
- different action

Firstly, it should be noted that this is correct code for a PRI ALT or ALT
constructor. It is quite acceptable to have the same channel mentioned in
more than one guard; although the associated Boolean expressions would
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usually preclude the possibility of both guards being ready simultaneously.
However with the above code if A and B are both greater than zero then, if
there is already a process waiting to output to ch, the execution of the PRI
ALT will favour the first guard. If, on the other hand, the PRI ALT process is
suspended when the output request on ch is made then the semantics of the
PRI ALT do not guarantee that the second guard will not be picked for
execution. This seemingly pecuhar distinction makes implementation of
the PRI ALT easier.

The above code interestingly illustrates another property of the ALT
constructor; what would happen if A and B were both less than zero?
Clearly neither of the guards can ever be ready. The ALT is thus equivalent
to the primitive process sT0p. Care should be taken to ensure that all the
Boolean expressions (within guards) are related in such a way as for it to be
unp0531ble for them all to be FALSE. Of course the guard:

ch ? X
is equivalent to:
TRUE & ch ? X

and ensures that the ALT process does not suffer from this difficulty.

It was mentioned earlier in this section that a guard of the form TRUE &
sk1p effectively reduces an ALT statement, which contains it, to a simple
process. This is because the guard is always ready and can therefore always
be chosen. Where this guard can be useful, however, is as the last
alternative in a PRI ALT. Consider, for illustration, a process that loops
round outputting down channel out a series of increasing integers:

SEQ
n:=0
WHILE TRUE
SEQ
out ! n
ni=n+1

Periodically this process receives a communication, through channel in,
which resets the integer n. It is necessary therefore to check for the
existence of a new input each time the process loops. However the process
does not wish to wait for a new value if there is not one immediately
available. To achieve this behaviour the process must be changed to
include a PRI ALT:

SEQ
n:=0
WHILE TRUE
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PRI ALT
in?7n’
SKIP
TRUE & SKIP
SEQ
out !'n
ni=n+1

The PRI ALT is needed so that the input is guaranteed to be taken if a
communication is possible.

This use of a TRUE & SKIP guard in a PRI ALT, although illustrated only by a
simple example above, is an important construct with many uses. Care
must however be taken to ensure that busy wait loops are not pro-
grammed. A busy wait loop is one in which a process continually executes
without becoming suspended but without performing any worthwhile
computations. This can constitute a livelock.

3.7 Rules of association

In this chapter most of the program structures of occam have been
described; primitive processes, blocks and the SEQ, PAR, IF, CASE, WHILE and
ALT constructors have all been considered. The only significant language
structure remaining is the Pro¢ (see Chapter 6). However before going on
to describe data types, in the next chapter, an important property of the PAR
and SEQ constructors is analysed. Both of these constructs obey the rule of
association; for example the following two programs are equivalent:

SEQ SEQ
SEQ A

A SEQ

B B

¢ ¢

where 4, B and ¢ are processes. Indeed both of the above programs are
equivalent to:

SEQ
A
B
C

That is, a sequence of sequences is itself a sequence.
An identical rule also applied to PAR. Although this property of
association is in many ways obvious it is the first example we have met, in
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this book, of a transformation to a program that is guaranteed not to affect
the meaning of the program. The topic of transformations is an important
one in occam and is considered at length in Chapter 10.

Before concluding this chapter, however, two further simple trans-
formations will be given. Because the components of a PAR are concurrent it
is possible to rearrange these components into whatever order is required:

PAR PAR PAR
A C B
B B A
¢ A ¢

Finally, and most importantly, occam allows a $ta to be replaced by a PAR if
the components of the $tq are independent of one another:

SEQ - PAR
A A
B B

where A and B have no shared variables or channels in common. This
transformation is correct, as the evaluation of an expression cannot have
side-effects even if it involves a function call. If syntactically two processes
are unrelated then their executions will also be independent. This is, of
course, not the case with languages that have functions that can act on
non-local data.

The motivation for this final transformation is to increase the paral-
lelism within the program. Even though the execution of a PAR process is
more expensive than that of a st (see Chapter 8) the increased non-
determinism is usually of benefit. The use of the above transformations is
illustrated by the following example:

SEQ

in1 2 X

Y=Y +X -=- for some Y
in2 72 P

Pi=pP+y

A value is read down channel in1 added to Y, which is then added to p (the
initial value of P being read from channel in2).
By the rule of association this is equivalent to:

SEQ

SEQ

int 7 X
Y=Y+ X
in2 7 p
Pi=P+Y
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And again:
SEQ
SEQ ~— SEQ@ with two independent components
SEQ
int 7 X
Y=Y +X
in2 7 P
P:=P+Y

The labelled stEa can now be replaced by a PAR:

SEQ
PAR
SEQ
int 7 X
Y=Y + X
ing 7 P
P:i=P +Y

The two channel operations are now concurrent; the program being
transformed by the repeated application of simple rules. As indicated
above this topic is discussed in detail in Chapter 10.



CHAPTER 4

Data Types-

Most books that examine programming languages give equal coverage to
the control structures and data types supported by the language. In
introducing occam more attention has been given here to the control
structures. This is because they represent the novel and powerful features
of the language. Nevertheless without a model for representing data the
language would clearly be incomplete. This chapter considers this data
model.

Although user defined scalar types cannot be used in occam there are
available a number of predefined data types:

® INT - an integer type; defined to be the one that an implementation can
best support (this will be a multiple of 8 bits in length).

© BYTE — integer type with range 0 ... 255.
€ B0OL — Boolean type with values TRUE and FALSE.

An implementation may also support explicit 16, 32 and 64-bit integers
(1NT16, INT32 and INT64).

These simple types, together with CHAN and TIMER, are known as
primitive types.

Hexadecimal integer constants are allowed; these are designated by a
preceding #. Byte constants can be represented by characters; they are
defined within single quotes and have the value given by the associated
ASCII code. The character * can be used to gain access to the non-
printable characters: : ,

'a' —-asciia, internal representation97
‘¢! ——ascii ¢

'k¢! ~- carriage return

t#n! —~— newline

Yhk! —— aggii %

'R11 —~ageii !

53
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In addition to the above integer based types there are two floating point
representations:

© REAL32 — 32-bit real defined by ANSI/IEEE standard 754-1985,
© REAL64 — 64-bit real defined by ANSI/IEEE standard 754-1985.

By giving a strict definition to floating point values a computation
undertaken on a host system should generate the same results as one
executed on the target. Some implementations of occam, though not that
on the transputer, may however also provide a type ReAL which will be
defined, like INT, to be the one that an implementation can best support.
This will be needed as many 32-bit machines have a floating point
representation that is different from the ANSI/IEEE standard. Real
numbers must contain a ‘.’, and may be raised to a power of ten by the
exponential operator E. A detailed description of the representation of
reals is given in Appendix C.
The full range of primitive types is given by:

primitive type = CHAN OF P
| TIMER
| sooL
| BYTE
| INT
| REAL32
| REALG4
| REAL

| INT16

| INT32

| INT64

The range of types available in occam is defined by;

type = primitive type
| PORT OF type
| array type
| record type

The primitive type PORT is considered later (Chapter 9).
Variables are declared to be of a particular type by listing them after
the name of the type:

INT I, J, Kt

INT16 L:

BOOL Stop, Go, Action:
BYTE Char:

REAL3Z X, Y, I:
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The list is terminated by a colon.

All variables must of course be defined and are associated with a single
type. All primitive types (apart from CHAN and TIMER) have the assignment
operator defined. Literals can also be used with all these data types. Some
examples of the use of literals are:

I =4

L= 42

Stop := FALSE

Char := 'q'

X := 6.42

Y := 0.7E+3 ~=700.0
7 := 1,0E-3 --0.001

Real literals are rounded if they do not have an exact representation in that
type. In order to clarify the type of a literal a type tag, in parentheses, may
be added, for example:

X :
L:

6.42(REAL32)
42(INT16)

This mechanism can also be used to give a limited form of retyping; i.e. a
character literal (which is of type BYTE) can be interpreted as a value of
another integer type;

J o= YATCINT)
Named constants are defined by abbreviations (see Chapter 6):

VAL INT MAX IS 1024:
VAL REAL32 PI IS 3.1415926:

These declare an INT constant called #AX with a value 1024 and a REAL32
constant PI with an appropriate value.

For all integer types occam provides two operators for finding the most
negative and most positive values which variables of that type can take.
These operators are called M0STPOS and MOSTHEG.

4.1 Expressions

The usual arithmetic operations are available for integers and reals:

1+ -= addition
X=-Y -~ subtraction
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L ~—nultiplication

/1 —— division of reals

/4 ~—division of integers (round down)
\ —— remainder operation

If during the evaluation of these expressions an overflow condition occurs
then the associated process is deemed to have executed a $TOP. The
operators PLUS, MINUS and TIMES can, however, be used to wrap round (i.e.
they are modulo operators). Thus H0STPOS PLUS 1 is equal to MOSTNEG;
whereas M0sTPoS + 1 will cause $T0P. These variants are particularly useful
when dealing with real-time as the values given by a TIMER do themselves
wrap round. The following delay is therefore coded reliably even when the
clock resets itself:

VAL INT DELAY 1S 5000:
INT T:
TIMER Clock:
SEQ
Clock 7 T ‘
Clock ? AFTER T PLUS DELAY

Indeed the TIMER itself executes a PLUS 1 operation for each increment of the
clock value. '

Within occam each type has an implicit order and therefore the

relational operators can be applied to all variables (of the same type):

1= - equal

1> —— greater than

1< -~— less than

1 »>=J =-greater than or equal
I <=y =-—less than or equal

I <>J ——not equal

Boolean variables have the N0T, AND and OR operators defined:

Go OR Action ;
Stop AND NOT Action

In addition to these operators that one would expect to see in a high level
language, there are six that view an INT (or BYTE) as a string of distinct bits:

I/V) -=— bitwise AND

I\ -= bitwise OR

" —-=—bitwise NOT

15¢ -= bitwise Exclusive OR

153 —= shift 1 to the right by three places
1 << 4 -~ shift I to the left by four places
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The shift operators both fill with zeros.

If an implementation does not provide the symbols \ and ~ then the
affected operators may be known as Rt (\), BITAND (/\), BITOR (\/) and
grTnoT (7).

An expression is defined to be an operand followed by an operator
followed by another operand (there are also unary operators, for
example N0T and -). The operand itself can be either a variable name, a
constant or an expression. However if the operand is an expression it
MUST be contained in brackets. Therefore X + Y + 2z will not
compile, it must be expressed as either X+ (Y + 1) or
(X +Y) +1. As a consequence of this rule there is no requirement
to define operator precedence.

4.2 The type model

Implicit within the concept of data typing is the idea that an expression
should contain only objects of the same type. There should be no implicit
type changes. If it is desirable to mix types within an expression then this
must be represented explicitly by using a type conversion. All types are
assumed to be built from the same base and therefore conversions are
allowed between all objects. A type conversion has one of three forms:

conversion =  type operand
| type ROUND operand
| type TRUNC operand

For instance:

Te
T ROUND e
T TRUNC e

~N
s ws  as
Honon

where z is of type T and e is an expression in another primitive type. The
effect of these conversions is to obtain a value of type T that is a repre-
sentation of, or approximation for, the value of e.

If the two primitive types have the same underlying structure, so that
values have identical representation in both types, then the conversion can
be expressed exactly.

INT I:
BYTE B:
SEQ
B :
I

X' == ascii code
INT B
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If during execution a conversion would give rise to an invalid represen-
tation, for example

SEQ
1 := 5012
B := BYTE I

then the conversion becomes equivalent to ST0P.

When the two types have different representations then a rounding or
truncation preference must be stated. In particular conversions between
integers and reals must take one of these forms:

INT 1,J,K:

REAL3Z X,Y:

SEQ
I:=7
X = 7.7777
J = INT TRUNC X =~ J has value 7
K := INT ROUND X -~ K has value 8
Y := REAL32 ROUND I

The use of retyping to allow a representation to be interpreted as a variable
of another type is considered in Chapter 6.

4.3 Arrays
The main structured data type in occam is the array:
array type = [expressionJtype

For example:

[32JINT X,Y,2:
C161REAL32 A,B,C:

The constants contained in square brackets gives the size of the array;
indexing is from zero. Every array must contain at least one component.
Each element in the array can be accessed by means of a subscript:

SEQ I = 0 FOR 32
ch 7 X[I1

A run-time check on array bounds violation is undertaken on most
implementations. As always an invalid state is synonymous with the sTop
process.
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Two arrays are considered to have the same type if they have the same
number of components and these components are of the same type. Whole
array assignments are available between structures of the same type:

[3210161INT MAT:
[C161INT A,B:
C16TINT C:
SEQ
~- generate A
B := A
C:=8B
SEQ@ I = 0 FOR SIZE [OIMAT
MATLIT := A

In the last part of this example each element of the first dimension of MAT is
assigned the value A. This is appropriate as each side of the assignment is a
16-element INT array.

Assignments between arrays can be implemented more effectively
than a series of simple element operations, although in the above example
the assignment of A to B is functionally equivalent to:

SEQ@ I = 0 FOR 16
BLIT := ALI]

As well as complete array assignments the communication of complete
arrays down channels is supported in occam:

ch ! A
ch 7 B

However for this to be syntactically correct the protocol for the channel ch
has to be correctly defined. This is dealt with in the next chapter.

4.3.1 Array constants

Auray literals are expressed as a series of data literals separated by commas
and contained within square brackets. For example consider a short integer
array that is to be given a set of initial values:

[41INT Fred:
SEQ
Fred := [1,2,4,8]

To be valid the array literal must contain the same number of components
as there are elements in the array.
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A two (or more) dimensional array can similarly be assigned values:

[31L21INT Dbt:
SEQ .
bbt := [[7,111,02,51,04,31]

Here the value of, say, dbt[21[1] after the assignment is 3.
Another example of an array constant is the following which involves
an array of BYTE:

L61BYTE Grades:
SEQ
Grades := ['A’,'B','C','D','E','F']

4.3.2 Strings

Constant arrays of bytes can also be represented as strings. A string is a
series of ASCII characters bracketed by quotation marks:

"ABCD"
"Frank Zappa"

A string can be assigned to a BYTE array provided that the number of
elements is the same:

Grades := "ABCDEF"

The length of a string can be obtained by using the sizE operator; for
example the following process outputs all the 6rades down channel out:

SEQ I = 0 FOR SIZE Grades
out ! Grades[1]

An alternative approach is to store the length of the string in its first byte.
The compiler can be forced to do this by placing the character *1
immediately after the first "; the value of byte 0 is then the subscript of the
last character of the string: o

Grades = "*1ABCDEF"
SEQ 1 = 1 FOR Grades[0]
out ! Grades[1]

4.3.3 Array elements

Most actions to be undertaken with arrays are expressed, naturally, -as
subscript operations:

second := Grades[1] =—— for a BYTE variable second
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However where sections of arrays are involved it is more succinct to
express the operations as acting upon slices or segments of the array rather
than individual elements. Moreover, slice operations can be implemented
more efficiently. For example rather than have:

SEQ I =7 FOR 10
ALIJ:= BLI - 71

A slice operation would be:
LA FROM 7 FOR 103:= [B FROM O FOR 101

Note, that the square brackets are necessary but that the bounds (7 and
16, and 0 and 9, in the above example) can be dynamic. However, the
lower bound must be non-negative and the upper bound greater than
zero.

Array slices are particularly important when a series of elements is to
be communicated down a channel. Here again considerable efficiency
improvements can be obtained, however the channel must be ‘informed’
that such block communication is taking place. This is achieved by defining
protocols and is described in the next chapter.

A further method of accessing an array is to use a table. A table has
the same number of components as the array (or slice) and is contained
within square brackets, for example:

[8IINT A:
SEQ
A := [ao,al,a2,a3,ak,a5,a6,a7]
- where ai is an integer variable that has
——a value at this point in the progranm
[b1,b2] := [A FROM 4 FOR 2]
~=bi is an INT variable

One of the effects of this code will be to set b1 to a4 and b2 to a5.

It follows from the syntax that a constant array is just a special case of a
table.

Occam array structures are designed for ease of programming and
efficiency of implementation. Arrays can be accessed by subscripts in the
usual way. However groups of elements can be manipulated within a
single expression by the use of slices (also called segments) and tables.
Moreover complete array assignments are possible between arrays of the
same structure. All of these group assignments can take advantage of
block memory transfer instructions of the transputer (and other
microprocessors) and block communication down a link between
transputers.
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4.4 Type definition

Although type definitions are not presently supported in occam, they may
be included in future versions of the language. As is customary in
languages like Pascal, a type name is defined by:

definition = TYPE name IS type :

Although new user defined types are not allowed a type definition can be
used as an abbreviation for primitive types, array types and record types.
Examples of usage are:

TYPE SYS.INT IS INT16:
TYPE SYS.REAL IS REAL32:

TYPE Count IS [161INT:

VAL INT N IS 10:
TYPE MATRIX IS ENJILNIREALG4:

TYPE String IS [10241BYTE:
TYPE Page IS [641String:
TYPE Book IS [2501Page:

Type definitions are used in the same way as predeﬁned types in the
declaration of variables:

SYS.INT 1,J,K:
Count Vec:
MATRIX Results, Parameters:

Book Programming.In.Occam:

4.5 Record and variant types

The designers of occam have considered introducing records and variant
records into the language. To this end a number of syntactical forms have
been experimented with. Although these types are not presently sup-
ported, they may also be included in future versions of the language. A
possible syntax for records is given below.

Records are used to define structures, the components of which may
be of different types. Although records are undoubtedly useful pro-
gramming tools, the motivation for including them in occam is more to do
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with communicating groups of objects down channels (and links) rather
than general computation. A record is declared by first defining its type
using a RECORD definition. For example:

RECORD INT.AND.REAL IS (INT,REAL32):
RECORD Odd.Collection IS (INT,BOOL,BYTE,REAL64):

Records are, in general, distinguished from arrays by the use of round,
rather than square, brackets.

record type = ({,type})

where {, type} means one or more types separated by commas. In the above
examples INT.AND.REAL defines a record type with two components, one INT
and one REAL32. The other type definition, 0dd.Collection, has four com-
ponents all of different types.

Variables of these record types can be defined and used in
assignments: '

RECORD INT.AND.REAL IS (INT,REAL32):
INT.AND.REAL IR1,IR2:

CINT 1:

REAL32 R:

SEQ
IRt := (1,0.0)
IR2 := IR1
(I,R) = IR2

The constructs within brackets are record elements; (1,0.0) is a constant
record, whereas (I,R) contains two variables (of appropriate type). The
effect of executing this code is to set I to 1 and R to 0.0.

In occam there is no means of addressing a single component of a
record in isolation from the whole structure. Therefore to add, say, one to
the INT field of the above record (IR1) requires the record to be split up into
its constituent parts and then reassembled after the field update:

INT I:
REAL32 R:
SEQ
(I,R) :=
I =1+
IRt := (I

IR1
1
SR

Although Pascal and Ada programmers will be used to updating individual
components of records the lack of this provision in occam simplifies the imple-
mentation of records without removing any functionality from the language.
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Further examples of record types are given below:

RECORD Three.INTs IS (INT,INT,INT):
RECORD Three.REALs IS (REAL32,REAL32,REAL32):

RECORD Threes IS (Three.INTs,Three.REALs):
~~ this record is composed of two records types

VAL INT Number.of.Names IS 64:

TYPE String IS [8IBYTE:

RECORD NAME IS (INT,String,String):
TYPE LIST IS [Number.of.NamesINAME:

With this last strﬁctu:e (which is an array of records) a new NAME (with
index, say, 42) could be added to the array alist (of type LIST) as follows:

LIST alist:
NAME aname:
SEQ

aname = (42," ALAN","  BURNS")
alist[42] := ananme



CHAPTER 5
Channel Protocols

A major criticism of earlier versions of occam (see Appendix E) was that
data communication between processes could only take place a single
object at a time. If ten integers had to be passed down a channel then ten
distinct rendezvous were needed. This inevitably led to inefficiencies. It
was also at variance with the transputer’s capabilities (see Chapters 7 and
8), which could cope with block transfer down an inter-transputer link.
Block transfer between processes on the same processor is, by comparison
with link communication, straightforward. The current version of occam
does allow groups of objects to be transferred during a single rendezvous.
Moreover the primitive data types now supported in occam vary in length.
It is therefore necessary to check the size of single objects during
communication. Finally, type checking requirements force a channel to be
‘aware’ of the type of the input expression and output variable.

If groups of objects are to be transferred together then it is necessary
for a program to be unambiguous in its use of channels. For example if ten
BYTES are to be written to a channel, by some process, then exactly ten BYTES
must be read. If less were read then there would, inevitably, be a run-time
error. Communication down transputer links would be particularly difficult
to arrange if both communicating partners did not know the size of the data
being transferred.

To avoid run-time errors and inefficiencies it is necessary to build into
the language features that will allow the compiler to check for erroneous
programs. Apart from the simplest use of channels it is not possible for a
compiler to check all block transfers and guarantee correct usage. Instead,
occam has now added protocols to the definition of channels.

channel type = CHAN OF Protocol

Both input and output operations must be compatible with the defined
protocol. If either is not then the compiler will reject the program or, in
complex situations where the protocol is non-trivial, a well defined
66
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run-time error is specified with the usual effect of a process (or processes)
being made equivalent to STOP.

A protocol is a statement about the type of the object using the channel.
In the last chapter it was noted that occam supports primitive types and
structured types. Protocols themselves can take one of three forms

definition = PROTOCOL name IS simple protocol:
| PROTOCOL name IS sequential protocol:
| PROTOCOL name
CASE
{tagged protocol}:

Each of the three forms will be considered in turn.

5.1 Simple protocols

A simple protocol is used to pass a single object (a primitive or structured
type) down a channel. Its definition however also incorporates the transfer
of a variable length array.

simple protocol = type
| type::[Itype

input = channel ? input item

input item = variable
| variable :: variable

output = channel ! output item

output item = expression
| expression :: expression

A simple protocol need not be explicitly defined; it can be used directly in
the definition of the channel.

5.1.1 Primitive types

A primitive protocol is merely a simple scalar type, for example the
familiar integer channel that has been used often in this book:

CHAN OF INT C1:
The input operation

€171
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is compatible with the protocol provided 1 is of type INT. Similarly the
output process:

DRI

is compatible with the protocol as long as the expression X is of type INT.
Primitive protocols of this form can be defined for Boot, BYTE and all the
real types.

5.1.2 Array types

Inthe above example ¢1is defined to pass simple integer values, one at a time.
If, however, the programmer wishes to communicate a group of integers
down achannel thenitis more appropriate to define the channel to have either
an array or arecord protocol (or a sequential protocol —-see next section). For
example suppose that two processes always communicate five INT values
(constructed as either a five element array or five distinct variables) with a
primitive protocol this would involve five distinct rendezvous:

—— Example 1 using an array
CHAN OF INT C1:
PAR
[5TINT OUT:
SEQ
-— generate OQUT
SEQ I =0 FOR S
1 ! outl1l
[5JINT IN:
SEQ
SEQ J = 0 FOR 5
€1 7 INLJ]
-—use IN

—— Example 2 using 5 INT variables
CHAN OF INT C1:

PAR
INT OUT1,00T2,0UT3,0UT4,0UT5:
SEQ
~— generate OUTT ... OUTS
SEQ
¢1 ! outt
¢1 1 ouT2
c1 ! out3
€1 ! oUT4
¢1 ! outs
INT IN1,IN2,IN3,ING, INS:
SEQ

SEQ
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17 IM
€1 7 IN2
€1 ? IN3
C1 7 IN&
€17 IN5

—--use IN1 ... INS

Considerable improvements in both readability and implementational
efficiency can be obtained if instead of a simple primitive protocol a
structured one is used:

CHAN OF [5IINT C5:
The two examples given above then reduce to:

—— Example 1 using an array and an array protocol
CHAN OF [5JINT (5:
PAR
[51INT OuT:
SEQ
--— generate QUT
€5 ! out
C5JINT IN:
SEQ
¢5 7 IN
~= use IN

== Example 2 using 5 INT variables and an array protocol
CHAN OF L5JINT (5:
PAR
INT OUT1,0UT2,0UT3,0UT4,0UTS:
SEQ
~=— generate OUT1 ... OUTS
¢5 ' [OUTT,0UT2,0UT3,0UT4,0UT5]
INT IN1,IN2,IN3,IMN4,INS:
SEQ
€5 2 [IN1,IN2,IN3,IN&,IN5]
-=use INT ... INS

In both of these examples the objects being input and cutput are compatible
with the protocol definition because they form a five element INT array —
either explicitly using an actual array or implicitly using a table.

Clearly arrays and tables can be mixed and array slices (as long as the
size of the slice is correct) can be used. For example the following are all
compatible with the protocol definition of the channel ¢5:

c5 ' [ouTt1,0UT2,0UT3,0UT4,0UTS5]
and [
€5 7 IN
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¢5 ! [4,8,16,32,64]
and
¢5 7 IN

¢5 ! out
and
¢5 7 [BIG.IN FROM 5 FOR 5]

where B1G.IN is an INT array of at least 10 elements

In all of the above examples the arrays being communicated have
only had a small number of elements. Where large groups of objects
need to be exchanged between processes (which may be executing on
different processors) significant increases in speed (on the transputer
at least) are observed if the exchange is expressed as a single commu-
nication using an appropriate protocol. For instance the following
program outline involves the passing of over one million REAL64
values: :

VAL INT N 1S 1024:
CHAN OF [NJLNIREALG4 Exchange:
PAR

SEQ

Exchange ? A
SEQ

e

Exchange ! B

where A and 8 are of type [NIINIREAL64.

5.1.3 Variable length arrays

In all the above examples a complete array was transferred down the
channel. This is, in general, not always required; often only a proportion of
the array need be communicated. The second form for a sequential
protocol caters for this requirement:

simple protocol = type::[Itype
input item = variable :: variable

output item = expression :: expression
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For example the following defines a channel, vLA, that will pass up to 256
elements of a REAL32 array:

CHAN OF BYTE::[IREAL32 VLA:

A communication down VLA involves first sending a value (of type BYTE) to
indicate the number of REAL32 values that will follow. The definition of the
protocol therefore has to involve two types; the type of the count value —
typically BYTE or INT — and the type of the array elements. Usage of VLA is
straightforward; for example the following passes the first 17 elements of
the array 4 to elements 20-36 in array B:

VLA | 17::[A FROM O FOR 171

VLA ? bt::[B FROM 20 FOR bt]

bt is of type BYTE and gets the value 17 after the rendezvous; A and B are
appropriately sized REAL32 arrays.

5.1.4 Record types

The definition of a channel protocol can incorporate any valid occam type
definition; it follows therefore that records, if provided, can also be
communicated as a single entity. This is useful when the group of objects
that should logically be transmitted together are of different type. As with
array protocols a channel defined to have a record protocol can be used to
transmit actual records or record elements:

RECORD INT.AND.REAL IS (INT,REAL32):
CHAN OF INT.AND.REAL Transmit:
PAR

INT.AND.REAL IR1:

INT I:

REAL32 R:

SEQ

Transmit ? IR1

Transmit ? (I,R)

INT.AND.REAL IRZ:
SER

Transmit ! (42,45.6)
Transmit ! IR2

In this example a simple record type is defined (it contains only two
components), a channel is declared to have this record type as its protocol
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and it is then used for two communications. With the first communication
two literals are output in the second process and read into a variable IR1 (of
type INT.AND.REAL) in the first process. This is followed by the values
contained in IR2 being passed to the the variables I and R.

More complex record types are communicated in the same way as the
above simple cases. Consider a record that contains a square matrix, its
determinant, its inverse and two labels, one a string and the other an integer:

VAL INT N IS 24:

VAL INT String.Max IS 16:

TYPE MATRIX IS [NILNIREAL32:

TYPE String IS [String.Max]BYTE:

RECORD Matrix.Construct IS
(INT,String,MATRIX,REAL32,MATRIX):

A channel for communicating these structures is defined and used as
follows:

CHAN OF Matrix.Construct A.Channel:
PAR

Matrix.Construct MC1:

SEQ

A.Channel 7 MC1

Matrix.Construct MC2:
SEQ

A.Channel ! MC2

As any input operation is allowed in a guard for an ALT process it follows
that the input of a structures type would also be allowed:

VAL INT M IS 42: ~—-— some appropriate value
[MICHAN OF Matrix.Construct A.Set:
PAR

[MIMatrix.Construct MC:

SEQ

ALT I =0 FOR M
A.SetCI] 7 mMcl1l
~=action
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5.2 Sequential protocols
Arrays and records can be used to communicate groups of objects down
channels as a single logical transaction. A sequential protocol allows such
groups to be communicated without the use of structured types. Rather
than have a simple protocol, of a structured type, a sequential protocol
gives the types of each object being transferred:

sequential protocol = {; simple protocol}

input = channel ? {; input item}

output = channel ! {; output item}
An output

CLXT;X2; X35 ouu s Xn
is compatible with the protocol

P1; P2 ; P3; ... ; Pn
provided that Xj is compatible with pj. Similarly the input

C?2Y1;¥2;%Y3; ... ; Yn
is compatible with the protocol provided Yj is compatible with Ppj.

A sequential protocol has to be defined before it is used in the
declaration of a channel. To illustrate the use of this kind of protocol

consider the transfer of five integers down channel ch:

PROTOCOL fiveint IS INT;INT;INT;INT;INT:
CHAN OF fiveint ch:
PAR

ch ! outl;out2;out3;outh;outs
-=all INT

¢h ? in1;in2;in3;in4;in5
~=all INT

Similarly to send two objects of different type would involve:

PROTOCOL int.real IS INT;REAL32:
CHAN OF int.real ch:
PAR
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ch ! outint ; outreal

¢ch 2 inint ; inreal

5.3 Variant protocolé

With all the above protocols the type of the object (or sequence of objects)
is fixed by the definition of the channel. This is, in general, too rigid. Two
processes may wish to pass data of various types and in no particular order.
Consider two processes that exchange INT and REAL32 values; with a fixed
protocol it would be necessary to define and use two channels;

CHAN OF INT C1:
CHAN OF REAL32 (2:

PAR
SEQ
—— first process; includes processes such as
¢1 ! 1 —-integer
(2! R == real
SEQ

——second process, includes processes such as
¢1 7 J —-integer
2 2 X == real

This ‘solution’ is clearly expensive in terms of channel definitions and could
lead to deadlock problems or at least programs that are difficult to read and
analyse. Occam removes the need to have a collection of channels between
processes by providing variant protocols. A single channel can thus be used
for all communication between two processes.

definition = PROTOCOL name
CASE
{tagged protocol}

tagged protocol = tag
| tag ; protocol
tag = name

To output a variant type is straightforward. The channel is defined to have
the correct variant protocol and the tag is used to indicate which variant is
being output on each occasion the channel is used:

output = channel ! tag {; output iteml

In the following example the channel ¢.all is used to communicate an
integer or a REAL32 value:
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PROTOCOL INT.OR.REAL
CASE
Fixed ; INT
Float ; REAL32

CHAN OF INT.OR.REAL C.all:
PAR
SEQ
—-—first process, including processes such as
C.all ! Fixed ; I == integer
C.all ! Float ; R —-real

Input of a value from a channel defined to have a variant protocol is more
complicated. The reading process does not know the type of the object
being transmitted, it must therefore have a collection of possible read
actions; one for each tag field. This need is expressed in the syntax as an
input selection or CASE structure:

case input = channel ? CASE
{variant}

variant = tagged list
process
| specification:
variant

tagged list = tag {; input item}
process = case input

alternative = case input

Note that the CASE structure not only provides a selector for each tag field
but allows an arbitrary process to be executed after the variant type has
been read. This enables algorithms that require different processing to
be undertaken, depending on the type on the object being read, to be
easily expressed. However, if the associated process would be skip and
there is only one tagged list a shorthand form for the input is allowed:

input = channel ? CASF tagged list

The INT or REAL32 program can now be completed. In the code that is
given below the reading process sets a Boolean flag (It.Was.An.Integer) to
‘remember’ which type of object was read.

PROTOCOL INT.OR.REAL
CASE
Fixed ; INT
Float ; REAL32
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.
.

CHAN OF INT.OR.REAL C.all:

PAR
SEQ
—-— first process, including processes such as
C.all ! Fixed ; I -=- integer
C.all ! Float ; R == real
SEQ

—— second process, including a process such as
C.all ? CASE
Fixed ; |
It.Was.An.Integer :
Float ; X
It.Was.An.Integer := FALSE

TRUE

An execution of the cASE input would either read an INT value into J (and
set It.Was.An.Integer to TRUE) or a REAL32 value into X (and thereby set
It.Was.An.Integer to FALSE). Exactly one of these actions will take place
before the CASE input process terminates.

The input selection should have a tag value for each of the variants
defined in the type. If having read a variant object there is no component
with the same identifying tag then the selection behaves like $ToP.

Clearly more complicated variant types are possible and will be
communicated in the same manner.

Earlier in this chapter a simple protocol was used to pass a variable length
array down achannel. Ifthe lengths of the arrays being passed are restricted to
a few possibilities then it may be more efficient to use a variant protocol:

PROTOCOL Variable.Array
CASE
short; [16IREAL32
medium; [64IREAL3Z
long; [20561REAL32

Consider, for illustration, a process that normalizes an object of type
Variable.Array. By normalize we mean divide each element by the sum of
all the elements. The process obtains the arrays down channel To.Nornalize
and passes the normalized form on to channel Has.Normalized. To update
the data a long array hold is used; however, the type model requires arrays
of correct size to be used when inputting the smaller variants. These
temporary arrays are called hold1 and hotd2.

[161REAL32 holdi: == temporary array for short
[64IREAL32 hold2: ~—~ temporary array for medium
[20561REAL32 hold: —-— array for data

INT size:



CHAPTER 6

Abbreviations,
Procedures and
Functions

The only form of modularity supported in occam is the procedure;
represented by the reserved word PRoC. PROCs can be defined at any place
where a variable declaration is allowed.. A Pro¢ may therefore be defined -
within a PROC, although recursive (and mutual recursive) declarations are.
not legal. PRoCs are re-entrant in the sense that more than one process can
call them concurrently as long as there are no ‘global variables’ manipu-
lated within the proc. Functions are also available in occam but they are
constructed in such a way that they cannot give rise to side-effects.
Occam procedures and functions can, of course, have parameters; the
rules regarding parameter association are however expressed in terms of
abbreviations, which will therefore be considered first in this chapter.

6.1 Abbreviations

Occam is a block structured language; where a block is defined as:

block = specification
scope

scope = process

specification = declaration
| abbreviation
| definition

Declarations were considered in Chapter 4; definitions are described in the
following sections.

Abbreviations allow a variable to be associated with the name or value
of another variable (or expression). The abbreviation

INT i IS X:
80
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means that i is a local name for X; it is a reference to X, therefore within the
scope (of this abbreviation) a change to the value of i will also cause X to
change; i is defined to be of type INT, thus X must also be INT A formal way
of expressing this abbreviation is

SnlISe=Pe)
P(n)

where $ is a type specifier and P is a process. P(e) is a process that depends
on (uses) e; P(n) is the same process but depending on n; e.g.

INT new IS old: = SEQ

SEQ in 7 old
in ? new out ! old
out ! new

where in and out are INT channels

The abbreviation is invalid if n is used in P(n) after any action that
changes e. However if P(n) contains no reference to e then the abbreviation
is always valid as long as it is type compatible.

An example of the use of this abbreviation would be in the manipula-
tion of an array element. The following code

[MICNIREAL32 MATRIX:
SEQ I =0 FOR M
SEQ J = 0 FOR N
SEQ
ch1 ? MATRIXLIILJ]
MATRIXLIICJ] == MATRIXCIILJT * (MATRIXLIICJD + 42.0)
ch2 | MATRIX[11LJ3

can be expressed (equivalently) as

[MICNIREAL32 MATRIX:
SEQ I =0 FOR M
SEQ J = 0 FOR N
REAL32 EL IS MATRIXLIILJI:

SEQ
¢ch1 ? EL
EL := EL * (EL + 42.0)
ch2 ! EL

However, the following is invalid because of the rule specified earlier:

[MILNIREAL32 MATRIX:
SEQ I =0 FOR M
SEQ J = 0 FOR N
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REAL32 EL IS MATRIXLIJLJI:
SEQ
cht 7 EL
MATRIXCIILJT := EL * (EL + 42.0)
~~ This an error — MATRIXLIILJ]
~= is being used after the abbreviation
ch2 | EL

Note that in this example if the type specifier has not been given:
EL IS MATRIXLIILJI:

then EL is automatically allocated the same type as MATRIX[IILJ]. It is
acceptable notation for:

SnlSe
to be written as:
nlSe

although the extra security provided by the compiler check that e is of type
$ has been lost.

The above discussion assumes that e, the element in the abbreviation,
is a single variable. It is however possible for it to be an array:

[10TINT Mat IS VEC:
where VEC is of type [101INT, or
[IINT Mat IS VEC:

In this case VEC can be any one dimensional array of INT.
Abbreviations can also be used with channels. In Section 3.5.2 a ten
element buffer was given: '

VAL INT N IS 10:
[N + 1ICHAN OF INT C:
PAR
PAR P = 0 FOR N
INT BufferElement:
WHILE TRUE
SEQ
CCP] 7 BufferElement
CCP + 11 ! BufferElement
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More efficient code can be generated if each array index is calculated only
once rather than every time the channel is used:

VAL INT N IS 10:
[N + 1ICHAN OF INT C:
PAR
PAR P =0 FORN
INT BufferElement:
in IS CLPI:
out I§ CLP + 11:
WHILE TRUE
SEQ
in ? BufferElement
out ! BufferElement

The other form for an abbreviation (which was illustrated earlier) is to
define a constant:

VAL § name IS expression:
where § is again a type specifier. For example:

VAL INT Max IS 1024:
VAL BOOL Go IS TRUE:
VAL REAL32 pi IS 3.14159267:

The expression can involve variables:

VAL INT Start IS First.Value + 1:
VAL INT Upper.Limit IS Max — 1:

As with the earlier form of abbreviation, the type specifier can be omitted
if the type of the expression is unambiguous:

VAL Go IS TRUE:
VAL Start IS5 First.Value + 1:

Again the meaning of the VAL abbreviation can be expressed by the
relationship:

VAL S name IS exp = P(exp)
P(name)

A constant array is obtained by:

VAL [4JINT Exp 1S [1,2,4,81:
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The abbreviation structures within occam can be described by the follow-
ing relationship (see Appendix B for a complete description of the syntax):

abbreviation = specifier name IS element:
| VAL specifier name IS expression:

specifier = primitive type
| Lexpressionlspecifier
| [Ispecifier

In addition it was noted in Chapter 4 that an abbreviation for a type can be
given in a type definition:

TYPE Standard.INT IS INT32:

6.2 Definitions

An implementation will normally represent variables using a fixed number
of bytes or words of computer memory. The type model of occam will
ensure that variables are only used in a manner consistent with their type.
There are however situations where it is desirable to interpret a represen-
tation as a variable or value of a different type. This is accomplished by the
use of a definition:

definition = specifier name RETYPES element:
| VAL specifier name RETYPES expression:

This definition is therefore similar to an abbreviation except that there is a
type change. In particular a definition is invalid if it is used after an update
to the value of the element.

To illustrate the use of retyping consider an input process that reads an
INT down a channel and then wishes to access the variable as if it were an
array of BYTES.

INT I: =—=-32 bit representation
[41BYTE B:
SEQ
in?1
[41BYTE B RETYPES I:
SEQ
—— the array B can now be
—— accessed as long as I is
——not used

Care must be taken when using retyping conversions as they will invariably
lead to implementation dependent processes.
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6.3 Occam procedures
Procedures in occam are named processes with parameters:

definition = PROC name ({,formall})
body

formal = specifier name
| VAL specifier name

body = process

where {,fornal} means any number of formal parameters (including none)
separated by commas. The definition of a Proc, as it is a specification, is
completed by a colon (:) as the only character on a line; the colon must be
under the P in PROC.

An instance of that PROC entails naming it and presenting an equal
number of appropriate actual parameters:

instance = name ({,actual})
actual = element
| expression

For example,

PROC ARRANGE (INT High,Low)
—=— rearrange parameters so that the first
~— has the largest value

INT Temp:
IF
High < Low
SEQ
Temp := High
High := Low
Low := Temp
TRUE
SK1P

INT Number1, Number2:

SEQ
keyboard ? Number1t
keyboard 7 Number2
ARRANGE. (Number1,Number2)
screen ! Number1
screen ! Number2
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Any identifier which is neither a locally defined one (such as Tenp above) or
a formal parameter is said to be a ‘free identifier’. A free identifier must be
in scope at the place of the PROC declaration (this is analogous to global
variables in other languages).

With a program that is canonical (i.e. no identifier is used more than
once), the parameter association can be expressed formally using abbre-
viations. Let a Proc declaration have the following form:

PROC P(F0, F1, F2, ..., Fn)
B

where B is the occam process representing the body of the procedure. Then
an instance of the PRroC:

P(A0, Al, A2, ..., An)
can be replaced by:

FO IS AO:
F1 IS Al:
F2°IS A2:
Fn IS An:
B

The ‘call’ of the procedure is therefore replaced by the body of the
procedure, preceded by a series of abbreviations. This formal view has the
semantics of inline expansion. An implementation may, however, compile
the procedure as a substitution, as above, or as a closed subroutine in the
usual way.

6.3.1 PROC parameters

All formal parameters in a PROC must have their types specified, they are
passed (as the discussion above showed) by reference. Pass by value can be
forced by including the term VAL in the parameter declaration:

PROC Maximum (VAL INT A, B, INT Max)

IF
A>B
Max := A
TRUE
Max := B

Formally the parameter association, for a VAL parameter, is:

VAL Fi IS Ai:
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With a vAL formal parameter the actual parameter may take the form of an
expression,; it acts as a constant within the procedure.

Arrays may be passed as parameters by including [1 in the declaration
of the formal parameter. The size of the array does not have to be given as
any array (of the correct type and dimension) can be matched. This
feature, ‘combined with the use of the SIiE operator, allows general
purpose procedures to be written. The following PROC can be used to find
the average of any one dimensional real array:

PROC Average (LIREAL32 Data, REAL32 Res)
SEQ
Res := 0.0;
SEQ i = 0 FOR SIZE Data
Res := Res + Datalil
Res := Res/(REAL32 ROUND (SIZE Data))

The expression Res/(REAL32 ROUND (SIZE Data)) means divide the real value
Res by the length of the array bata, having first converted (by rounding) this
length from INT to REAL32.

In all of the above examples the PROC parameters have been variables
or values. There is however another important ‘type’ of parameter, namely
channels. A channel or array of channels can be passed to a procedure in
the same way as other objects. Consider, as an example, a PROC that
concentrates the input from an array of channels (passing BYTE values) into
a single out channel:

PROC Concentrator (LICHAN OF BYTE IN, CHAN OF BYTE OUT)
BYTE Element:
WHILE TRUE
ALT I = 0 FOR SIZE IN
IN[IT 2 Element
0UT ! Element

Note, that the protocol of the channel parameters must be given.

6.4 Use of PROCs

Clearly procedures, in all languages, are an important form of modularity.
This is particularly true in occam if the PrRots do not have free identifiers.
The standard programming support tools that surround occam can be used
to develop programs as hierarchies of PrRoCs and some implementations may
allow PROCs to be kept in different files and separately compiled. Libraries
of procs are therefore a possibility and would have obvious advantages.
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As a programming facility the use of PRo¢s can be subdivided into two,
largely distinct, categories. Firstly, in a sequence of statements an instance
of a PROC can be used (as a procedure is used in Pascal or Ada) to
encapsulate part of that sequence. In this situation the parameters are
usually variables (and values); for example, the Average PRo¢ defined
above. The second category consists of the use of a PROC to represent a
subprocess of a PAR. Here the parameters are normally channels (and
values). An example of this usage is the Concentrator PROC given at the end
of the previous section. Within a PAR, the concurrent processes commu-
nicate by channels; a powerful design method is to specify each of these
processes as a named PROC and to give their interfaces (the channels) as CHAN
parameters to these PROCs.

For illustration consider, in outline, a simple program that takes the
form of three processes in a line (this is known as a pipeline of processes).
The three processes are represented by PROCS: First, Second and Third. Into
First is passed a series of INTs from the keyboard; between the processes
BYTEs are communicated and from the third INTs again emerge and are
passed onto the screen. At the top level this program can be written as
follows:

PROC First(CHAN OF INT in, CHAN OF BYTE out)
PROC Second(CHAN OF BYTE in,out)
PROC Third(CHAN OF BYTE in, CHAN OF INT out)
CHAN OF INT keyboard:
PLACE keyboard AT 2:
CHAN OF ANY screen:
PLACE screen AT 1:
CHAN OF BYTE ch1,ch2:
PAR
First(keyboard,ch?)
Second(ch1,ch2)
Third(ch2,screen)

Because the bodies of the prots have not been given, this will not compile.
However, by including a null (i.e. skIP) process within the bodies of these
PROCs the program becomes correct (syntactically) and the compiler can be
used to check the logical consistency of the top level description of the
program.

PROC First(CHAN OF INT in, CHAN OF BYTE out)
SKIP

PROC Second(CHAN OF BYTE in,out)
SKIP

PROC Third(CHAN OF BYTE in, CHAN OF INT out)
SKIP
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CHAN OF INT keyboard:
PLACE keyboard AT 2:
CHAN OF ANY screen:
PLACE screen AT 1:
CHAN OF BYTE ch1,ch2:
‘PAR
First(keyboard,ch?)
Second(ch1,ch2)
Third(ch2,screen)

Errors such as an incompatible interface between two processes can soon
be isolated and corrected using this approach.

Having got the top level description correct each PROC can be coded. If
any of these is still complicated the programmer is advised to further
decompose the program in to subPROCS.

6.4.1 Prime number generator example

To illustrate this use of PROCs a non-trivial example will be given. This
example is found in a number of books on concurrent programming and
involves generating a sequence of prime numbers by using a sieve. The
structure of the algorithm is given by Figure 6.1.

Filter 1

Filter 2 frmmmip-seseoscse & Filter n >

\
A

Numbers EndStop

Concentrator

Primes

Figure 6.1 A prime number generator.

Each filter process obtains a prime number as the first integer it receives
from its neighbour on the left. It is then passed a series of larger integers; if
it can divide exactly any member of the series it discards it, otherwise it
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passes it on. In this way the first filter process will store the value 2, the
second 3, the third 5 (4 being removed by the first filter), the fourth 7 etc.
To generate N prime numbers N filter processes are needed; having
generated them the processes can be made to terminate by passing through
ZETO0.
At the top-most level the entire algorithm can be seen as a PROC to
generate N primes (see Figure 6.2):

PROC Generate (CHAN OF INT Primes)

Primes
Generate

Figure 6.2 The generator process.

Within this proc¢ the structure represented by Figure 6.1 can be given in
occam as:

VAL INT N 1S30:
PROC Generate ( CHAN OF INT Primes)
VAL INT EndToken IS O:
PROC Filter (CHAN OF INT left, right, down)
PROC Concentrator (LICHAN OF INT in, CHAN OF INT out)
PROC Numbers. (CHAN OF INT in,out)
PROC EndStop (CHAN OF INT in,out)
[N + TICHAN OF INT Interfilter:
[NICHAN OF INT PC:
CHAN OF INT OK.To.STOP:
PAR
Numbers (0K.To.STOP, InterFilter[0])
PAR I =0 FORN
Filter (InterFilter[Il, InterFilter[I + 11, PCLID)
EndStop (InterFilterINI,0K.To.STOP)
Concentrator (PC, Primes)

The above is not yet legal occam because the code for the bodies of the
PROCs has not yet been given (although sK1ps could have been used to give a
check). It illustrates, however, how the main PAR merely specifies a number
of PROC instances to represent the necessary processes. The PROCs them-
selves have only channel parameters.
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ready it could be chosen even when communication through in is possible.
It follows that the ALT must be replaced by a PRI ALT that gives priority to the
channel communication. A rearrangement of the code generates the PROC
defined above.

Next, the code for the important Filter process is developed:

PROC Filter(CHAN OF INT left,right,down)
INT p,q:
SEQ
left 2 p
q := 1 ~——dummy value, not EndToken
PAR )
down ! p
WHILE g <> EndToken
SEQ
left 7 q
IF
q = EndToken
SKIP
(g\p) <> 0
right ! g
TRUE
SKIP
right ! EndToken

The concentrator takes values from the channel series and outputs them:

PROC Concentrator (LICHAN OF INT in, CHAN OF INT out)
INT p:
SEQ i = 0 FOR N
SEQ
inlil 72 p
out | p

Finally there is the procedure that gives the code for the process at the end
of the filters:

PROC EndSTOP(CHAN OF INT in,out)
INT temp:
SEQ
in 7 temp
PAR
out ! EndToken
WHILE temp <> EndToken
in ? temp
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Once initiated this process becomes immediately suspended and remains in
that state until some value appears down channel in. It then communicates
EndToken down the out channel concurrent with reading more values from
‘upstream’.

The complete program can thus be assembled and when executing it
will generate the appropriate number of prime numbers before termi-
nating.

As well as illustrating the use of PRoCs to represent code that will be
executed as a concurrent process, this example indicates the form a
program must take if correct termination is to occur. Perhaps the greatest
source of error in occam programs is the deadlock brought about by a
faulty closing down sequence. In the above program only one process
(EndsTOP) has responsibility for recognizing the condition appropriate for
termination. It then communicates this to the head of all pipelines in the
program (in this case there is only one; Numbers). The instruction to
closedown is communicated, in the form of a token, down all pipes; with
each process making sure it:

1. passes the token on, then
2. closes down, and
3. does not read upstream again after receiving the token.

The process that initiated the closedown then waits until the token (or
tokens) it transmitted are returned, it can then terminate itself. Note that
the sending out of the token and the continuous reading from upstream
must be done in parallel. Otherwise a circular graph of dependencies may
ensue which would itself lead to a deadlock.

If the above structure is used the graceful termination of all processes
within a PAR will occur.

Finally this example shows the importance of using appropriate names
for channel parameters. Compare the diagram for the FILTER PROC (Figure
6.3) and the specification of the PRro¢ itself:

PROC FILTER(CHAN OF INT left,right,down)
The diagram has the important extra information that the direction of
usage of the channels is indicated. The syntax of the Pro¢ specification does
not contain this information. If the Pro¢ had been given as

PROC FILTER(CHAN OF INT one,two,three)
then any inconsistency in the top level description of the program would

not be as easy to observe. It would only be later when the whole program
was compiled together that the fault would be recognized. By using
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Left Right
m——

Down

Figure 6.3 A filter process.

parameter names such as in and out informal information is being added to
the formal syntax.

6.5 Parallel searching

The following example illustrates the use of concurrency in the exploitation
of multiprocessor hardware. Sequential searching techniques abound,
with most being based on an initial sorting of the data. And yet for very
large data sets a significant reduction in search time can only be effectively
accommodated if the overall search is broken down into a collection of
smaller searches that can be undertaken simultaneously.

To achieve this, the processes are normally arranged as a tree, see
Figure 6.4.

As is usual with a ‘computer’ tree the leaves are at the bottom and the
branches are above them; the top-most branch is known as the ‘root’. The
search routine therefore involves:

communicating a search key to root;

dispersing the key through the branches to all the leaves;
checking for the existence of the key in each leaf (in parallel);
gathering in the results from all the leaves, via the branches; and

“nok LN

communicating from root the result of the search.

To obtain an occam program for this search routine requires the develop-
ment of two PRoCs for the two process types — leaves and branches. In order
to simplify the code each leaf will be assumed to have only one data item
(pata) of type INT and the result passed up the tree will be a Boolean one,
merely indicating whether the key was found. The pro¢ for the branches is
as follows (six channel parameters are needed; two from the node above —
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B = Branch

I = Leaf

Figure 6.4 A tree of processes.

req and ans, two to the node below left — Lreq and Lans, and two to the node
below right — Rreq and Rans):

PROC branch(CHAN OF INT req,Lreq,Rreq, CHAN OF BOOL ans,Lans,Rans)
WHILE TRUE
INT key:
BOOL al,ar:
SEQ
req ? key
PAR
Lreq ! key
Rreq ! key
PAR
Lans 7 al
Rans ? ar
ans ! al OR ar

Interestingly, as the nature of the problem implies that a answer cannot be
given before a request has been made, it is not necessary to force the key
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outputs and returns to be in a strict sequence. The seq could thus be written
as:

SEQ

req ? key

PAR
Lreg ! key
Rreq ! key
Lans 7 al
Rans ? ar

ans ! al OR ar

The simpler proc for leaf processes only has two channel parameters, one to
obtain a request — req, and the other on which to reply (either positively or
negatively):

PROC leaf(CHAN OF INT req, CHAN OF BOOL ans)
INT Data,key:
SEQ
—~— load data
WHILE TRUE
SEQ
req ? key
ans ! key = Data

To illustrate how a tree of processes can be set up consider a trivial
example with four data items; i.e. four leaves and a tree with a depth of 3.
To generate a tree of this depth requires 8 down and 8 up channels, see
Figure 6.5. '

The complete program is therefore:

[8ICHAN OF INT (:
[BICHAN OF BOOL A:
PROC branch(CHAN OF INT req,Lreq,Rreq, CHAN OF BOOL ans,Lans,Rans)
—— body of PROC N
PROC leaf(CHAN OF INT req, CHAN OF BOOL ans)
—— body of PROC
PROC User.Interface(CHAN OF INT out, CHAN OF BOOL in)
-~ hody of some appropriate user interface process
PAR
branch(C[13,¢021,0031,A011,A021,A031)
branch(¢[21,CL4],C051,A021,AC41,A050)
branch(C[31,C061,C071,AL3],A06],A07D)
PAR i = 4 FOR 4
leaf(CLi1,ALID)
User.Interface(CL13,ALTD)
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AL4T1  AL51 AL61  AL7]

Figure 6.5 A tree of depth two.

The PAR replicator i = 4 FOR 4 sets up 4 processes; within each i has either the
value 4, 5, 6 or 7.

The general solution for any depth of tree is given in the next program.
If n is the depth of the tree then PLnl is the number of up and down channels

needed and PIn - 11 is the number of leaf processes generated, where PL1 is
a constant vector of the form:

VAL [101INT P IS [1,2,4,8,16,32,64,128,256,512]1:
The general solution is therefore:

VAL INT n IS 8: =—- for example
VAL [101INT P is [1,2,4,8,16,32,64,128,256,512]:
[PCnJICHAN OF INT C:
[PCnJICHAN OF BOOL A:
PAR
PAR i =0 FORn -1
PAR j = 0 FOR P[il
branch(CLPLid+ j 1,CLPLi + 11+(j * 2)1,
CLPLY + 114((j * 2) + 1],
ALPLiITY + §1,ALPLE + 11+(j * 231,
ACPLY + 11+ (5 * 2) + DD
PAR k = PEn - 11 FOR PLn — 1]
leaf(CLk1,ALkD)
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Tt was noted earlier that as occam is a static language the range field of a PAR
replicator must be a constant. In the above program the inner PAR has the
form:

PAR j = 0 FOR PLi]

Although PL[i1is constant, the occam compiler may not be able to recognize
this and will, consequently, reject the program. However as i clearly has an
upper limit of n — 2 it is possible to create more processes than are necessary
and allocate sKIp to the superfluous ones. The program thus becomes:

VAL INT n IS 8: ~—~ for example

VAL [101INT P is [1,2,4,8,16,32,64,128,256,512]:
[PLnJICHAN OF INT C:

[PLnJICHAN OF BOOL A:

PAR
PAR i =0 FORn—1
PAR j = 0 FOR P[n - 21
IF
j <= PLil
branch(CCPLil + j1,CCPLY + 11 + (§ * 2)1,
CIPLi + 11 + ((j *# 2) + D],
ACPLiT + j1,ALPLY + 11 + (§ % 2)1,
ALPLY + 11 + ((j * 2) + D)
TRUE
SKIP
PAR k = P[n — 11 FOR PLn — 1]
leaf(CLk1,ALkD)

The advantage of using a tree structure of processes is that for each
single increase in depth the number of leaf processes doubles. For example a
tree of depth 8 has 128 leaves, whereas a depth of 16 generates over 32,000
leaves. Clearly the use of such high numbers of processors is beyond present
capabilities. However, the potential for making use of parallel machines for
searching through very large databases is significant.

6.6 Functions

One of the intended application areas for occam (and the transputer) is
pumerical analysis. Within this area the concurrency offered by occam
coupled with the parallelism supplied by the transputer enables cost
effective systems to be built whose performance is comparable with that of
the powerful (and more expensive) supercomputers. One language feature
that numerical analysts feel is necessary is the function. Some programmers
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in this domain would even argue that functions are a fundamental
requirement if readable and expressive programs are to be written.

Unfortunately languages such as Pascal introduce the function in a way
that undermines the semantics of other features of the language. The
classic difficulty with functions is side-effects. This is where a function not
only returns a result but changes the value of other variables that are in
scope. Another hidden effect, that is possible in a concurrent programming
language, is for a function to contain internal concurrency. The evaluation
of a simple expression can, in these circumstances, lead to the creation and
execution of processes with even the possibility of delay or deadlock
occurring. It follows that the full meaning of any expression that contains a
function call can only be inferred by examining the code for the function
itself.

Occam introduces the function in a controlled way that prohibits
side-effects but is sufficiently expressive to allow effective use. An example
of a simple function is one that averages two REAL32 values:

REAL32 FUNCTION ave(VAL REAL32 A,B) IS (A + B) / FLOAT 2 :

The function is given a type and the structure after the 15 is an expression

of that type. Parameters must be vAL and the formal expression of

parameter passing is the same as for PRoCs. Again a function can be

compiled to be a closed subroutine or a substitution of the expression.
Having defined the function it can be used in the usual way.

L := ave(X,Y)

To calculate the average of three variables, given only this function would
require a nested function call:

7 := ave(W, ave(X,Y))
As part of an expression the usual brackets must be used:
DIFF := X + (ave(X,Y)/1)

This example represents the simplest form an occam function can take;
the result is available immediately as a simple expression made up entirely
of the parameters and a constant. In general a function may need to
compute intermediate values before the final result can be obtained. These
intermediate calculations, if necessary, are undertaken within the func-
tion’s body which takes the form of a valof. A valof is an occam construct
that defines a process whose behaviour is restricted to whatever actions are
required before the value of an expression can be evaluated. The restric-
tions imposed on this process are such that side-effects cannot occur.
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valof = VALOF
process
RESULT expression list
| specification
valof

For example the simple average calculation could have been expressed as a
series of intermediate stages:

1 := REAL32 Temp:

VALOF
SEQ
Temp:= X
Temp:= Temp + Y

Temp:= Temp / FLOAT 2
RESULT Temp

As part of a function the VALOF represents the body, or execution part:

REAL32 FUNCTION ave (VAL REAL32, A,B)
REAL32 Temp:
VALOF
SEQ
Temp:= A
Temp:= Temp + B
Temp:= Temp / FLOAT 2
RESULT Temp

Of course this code is extravagant and would actually be written as

REAL32 FUNCTION ave(VAL REAL32 A,B)
VALOF
SKIP
RESULT (A + B) / FLOAT 2

It is when the VALOF consists only of a sKiP process that the shortened
version using the IS clause is permitted.

The VALOF is a construct in its own right but its use is primarily within
the definition of a function. The restrictions on the process within a VALOF
are critically important: '

1. It must not contain a PAR construct.
2. It must not contain an ALT construct.
3. It must not contain channel input or output operations.
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4. Any assignment must be to a variable defined within or just prior to
the VALOF.

These restrictions remove the possibility of side-effects.

To give a more realistic example of a function (i.e. one that does not
have a sKIP body) the following finds the statistical standard deviation of a
series of observations. The observations are held as the first N values in an
array called ‘Observations’. Before giving this function however, two
others that will be of use are defined:

REAL32 FUNCTION SQR(VAL REAL32 X) IS X % X:
—— gives the square of the parameter

REAL32 FUNCTION SQRT(VAL REAL32 X)
REAL32 Sqroot:
VALOF
SEQ
~~ gives the square root of the parameter

RESULT Sgroot

The standard deviation function can now be given as:

" REAL32 FUNCTION Standard(VAL [IREAL32 Obs, VAL INT N)
REAL32 std:
VALOF
REAL32 Ave:
SEQ
Ave :
std .
SEQ i = 1 FOR N
Ave := Ave + Obs[i]
Ave := Ave / (REAL32 ROUND N)
SEQ@ i = 1 FORN
std := std + SQR(0bs[i] -~ Ave)
std:= SQRT(std)
RESULT std

0.0
0.0

"

6.6.1 Multi-value assignments and functioﬁs

Although the normal assignment has the form:

variable := expression
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occam supports a multiple assignment operator that can be used in place of
a sequence of individual assignments.

assignment = variable list := expression list

where variable list is a list of one or more variables separated by commas
and expression list is an identical number of expressions. The variables
(and hence the expressions) do not have to be of the same type. An
example of the use of a multiple assignment is:

X,Y,1 = a,b,c

where a is an expression of the same type as X; similarly b and Y, and ¢ and
2. This is equivalent to

SEQ
X:
Y:
1:

it ou on
o

If the expression list contains some of the variables in the variable list
then there could be confusion over the meaning of the multiple
a351gnment To ensure that the operator is unambiguous all the
expressions are evaluated before any of the assignments are made.
Hence the assignment:

XY, i= X+ 4, X +7,X+Y
is equivalent to:

SEQ
PAR

-
[t

Houn #
>

X:= {1
1:

(t1, t2 and t3 are local variables of the appropriate type).

One of the uses of the multiple assignment is that it enables the
definitions of VALOF and functions to be generalized so that they also deal
with expression lists rather than single values.

valof =  VALOF
process
RESULT expression list
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| specification
valof

definition = {, type} FUNCTION name ({, format})
function body

function body = valof

The function must have at least one type but it may have no formal
(parameter) part. To illustrate the use of a multiple value function consider
the standard deviation function given above. It can easily be changed to
return both the standard deviation and average of the set of recorded
observations.

REAL32, REAL32 FUNCTION Standard(VAL [IREAL32 Obs, VAL INT'N)
REAL32 std, Ave:
VALOF
-= as before
RESULT std, Ave

The use of this function must always take the form of a two-value
assignment: : '

8b,A := Standard(Observations, N)



CHAPTER 7

The TranSputer ‘

As was indicated in Chapter 1 the development of the occam programming
language has been undertaken alongside the design and construction of the
transputer. In the next chapter the implementation of occam on the
transputer is described. A short overview of the hardware is given in this
chapter.

‘Transputer’ is a generic term describing a family of programmable
VLSI devices including disk controllers, floating point processors,
graphics processors, signal processing devices and 32-bit and 16-bit
general purpose processors. A standard processor is illustrated in
Figure 7.1; this transputer contains . internal memory and four
communication links for direct connection with other transputers. The
address bus is, of course, joined to external memory and is
implemented in such a way that there is a continuous address space
including both internal and external memory. The first transputers were
launched with 2 K bytes of on-chip memory; 4 K versions of the 32-bit
transputer are also available and it is possible that 8 K devices will be
produced.

The four links are connected to the main processor via four link
interfaces. These interfaces can, independently, manage the commu-
nications of the link (including direct access to memory). As a result of this
architecture a transputer can simultaneously communicate on all four links
(in both directions) and execute an internal process. Much of the power of
the transputer comes from this facility. Point-to-point communication,
between processors, has the following advantages:

1. It does not require a fast communication bus.

2. Arbitrarily large systems can be constructed with all connections being
local and short.

3. The communication medium does not saturate when extra processes
are added.
104
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The main disadvantage with point-to-point communication is that
messages being transferred between two processors may have to pass
through a number of intermediary processors. Store and forward
software can however be incorporated where necessary on each
transputer:

SEQ
MessageSource 7 BufferA
WHILE TRUE
SEQ
PAR
MessageSource ? BufferB
MessageSink ! BufferA
PAR
MessageSource ?7 BufferA
MessageSink ! BufferB

In this code a message is first read into BufferA; after this, the process
goes into an infinite loop where it executes a st process. The first part
of this sta involves writing out the value of BufferA concurremt with
reading in a new value into BufferB. Once both of these actions have
taken place the second part of the stq is executed. This reverses the
actions (i.e. BufferB is output and BufferA is given a new value). If the
two channels MessageSource and MessageSink are mapped onto links this
process will pass on all the data it receives.

Each of the four links available on the standard transputers will
implement two channels (in opposite directions). The link interfaces
and the processor operate in parallel and each link interface can
provide block transfer. A message consists of a sequence of bytes, and
after each byte the sending transputer must wait for an
acknowledgement. However, as the acknowledgement can be sent on
receipt of the first bit an essentially continuous transmission can take
place.

The other significant pins illustrated in Figure 7.1 are Error,
Analyse, EventIn and Clockin. A software error, such as numerical
overflow causes the Error flag to be set; this could then be read by
another transputer in the system. Recovery from the error condition
can be achieved by use of Analysis which can be used to restart the
processor, without affecting memory, using either an internally
available or externally provided bootstrap program.

The EventIn pin (and the associated AckEvent) is a form of interrupt
mechanism and can be mapped onto a channel within the executing occam
program. The use of this pin is discussed further in Chapter 9.

Clockin cycles at a standard 5 MHz; within the transputer this is
stepped up to give a faster processing cycle and stepped down for use with
TIMER channels (see next chapter).
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7.1 'The instruction set

The lowest level at which a transputer will normally be programmed is
occam; the instruction set has therefore not been designed as a pro-
gramming language but to enable simple and efficient compilation and
execution. It consists of a relatively small number of instructions, all of
which have the same basic format. The instruction set will be kept
compatible over all transputer products.

Each instruction is only one byte long and contains a 4-bit value and a
4-bit function code; see Figure 7.2. This representation therefore allows for
only 16 basic functions; thirteen of which are used to code the most
important and frequently used functions of the computer. Such functions
include: load constant, add constant, load local, store local, store non-local
(non-local functions use the top of the evaluation stack as offset), jump,
conditional jump, call, etc. :

The three remaining codes are

operate
prefix
negative prefix

The function operate causes its data field (the operand) to be inter-
preted as an operation to be performed on the evaluation stack (the
evaluation stack consists of three fast registers). As the operand field is
only 4-bits wide this function, on its own, can distinguish between
sixteen operations; again the most common arithmetic and comparison
actions are encoded within this sixteen. To gain access to other
operations this function must be preceded by a prefix, or negative
prefix.

These last two functions allow the data field to be extended (indefi-
nitely). With all the above instructions the first action taken, when that
code is executed, is for the operand to be loaded into the least significant 4
bits of the operand register. The final action of all instructions (apart from
prefix and negative prefix) is to clear this operand register ready for the
next instruction. With the prefix function, however, the data field is shifted
four places up the operand register and the register is not cleared. The

Function code Data

Figure 7.2 The transputer word.
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effect of this is for the next instruction, after it has loaded its 4-bit operand,
to be working on an 8-bit data value. Two preceding prefix instructions will
yield a 12-bit data value; etc.

Negative prefix acts in the same way as prefix accept that the operand
register is complemented before the data is shifted. These instructions
enable operands with the range —256 to 255 to be constructed using only a
single prefixing instruction.

Sections of occam programs that manipulate bytes, Boolean values
and words can, as a result of the above structures, be translated into
transputer instructions that are largely independent of word length.

Measurements and analysis have indicated that about 80% of code
(generated from occam programs) can be executed without a prefix or
negative prefix instruction. Moreover as the prefetch buffer can hold two
words of memory (i.e. 8 instructions on the 32-bit transputer) it is rare for
the processor to have to wait for an instruction fetch cycle before
proceeding.

7.2 Physical properties

In order to give an impression of the tramsputer’s performance the
following statistics and characteristics may be useful:

® Each trahsputer is a single VLSI CMOS chip.
e On-chip memory is inherently fast static RAM.

e The 32-bit transputer gives access to 4 gigabytes of off-chip memory
through a 32-bit wide multiplexed address/data bus.

® A transputer will function at a speed between 5 and 10 MIPS (Millions
Instructions Per Second). Note, these are reduced instructions.

© The process cycle has a duration of 50 ns; a 25 ns cycle time is possible
in the future.

© A link can transfer data at a rate of 10 or 20 megabits per second, again
faster data transfer rates are possible.

® The design target for transmission failure on a link, due to a synchroni-
zation failure, is less than 0.1 FIT (less than one failure in ten thousand
million device operating hours).

e Transputers with more that 4 links are now technically feasible.

Although a typical member of the transputer product family consists of a
single chip containing processor, memory and communjcation links, the
most powerful member of the family also contains an on-chip floating point
unit (FPU). This 64-bit FPU operates concurrently with, but under the
control of, the central processor. It is built upon a three deep floating point
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evaluation stack and forms a computing engine of considerable power; for
example it is capable of sustaining well over one million floating pomt
operations per second.



CHAPTER 8

Implementing Occam on
the Transputer

In this chapter the mapping of occam programs on to the transputer is
described. High performance is necessary if transputers are to be used in
time-critical systems or if multi-transputer configurations are to challenge
the speed of the supercomputers. Other concurrent programming lan-
guages have proved to be difficult to implement efficiently; in particular
Ada (Burns, 1985) has serious difficulties here, requiring sophisticated
compiler optimization techniques to obtain adequate performance. Occam
has the advantage that an ‘occam engine’ is already available.

One element of this ‘occam engine’ is the provision of instructions that
apply directly to the execution of occam programs. In the previous chapter
the instruction set for the transputer was described; operations that
support the process model include:

start process,
end process,

®

®

@ input message,
©® output message,
®

delay process.

To execute the ALT process it is necessary to wait for one of a number of
possible events. Instructions are available to accommodate this effectively.
Other instructions support the reliable execution of sequential code, for
example array bounds checking is always provided.

8.1 Support for sequential processes

The transputer processor has six registers available for use with a sequential
process; see Figure 8.1. The registers A, B and C form the evaluation stack;
the workspace register points to an area of store where local variables for the
110
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currently executing process are located; the next . instruction
register has the usual function and the operand register was described in the
previous chapter. Expressions are evaluated on the stack; the designers of
the transputer felt (after performing a statistical analysis) that a stack size of
three provided the optimum balance between code compactness and
implementation complexity. As occam is designed so that its compiler can
recognize situations that would lead to stack overflow, no provisions are
made on the transputer to deal with this overflow condition. This improves
run-time efficiency. ‘

Locals

_— — Program

Workspace

Next :
instruction — o

Operand

Figure 8.1 Support for sequential program structures.

The use of a workspace and next instruction register implies that there
is no overhead in using a $ta constructor. This is however not the case for
PAR.

8.2 Support for concurrent processes

In Chapter 1 it was noted that a process can be in one of three states:

1. suspended';
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2. executing, or
3. executable.

‘A process that is suspended is waiting for an input or output action to-be
completed on a channel (including delay on a TIMER). For each transputerin a
system there will only be one executing process, all other processes that are
able to execute must be kept on a dispatch queue. To this end two further
registers are employed to implement concurrency. In Figure 8.2 this scheme
is illustrated; the example shown is for the following PAR process:

PAR

—t X D T

where process T is suspended, R is executing and P, @ and $ are executable
(but not actually executing).

8.3 Scheduling and priority

When an executing process is no longer able to proceed (for example if it
attempted to write to a channel on which a process was not waiting) then
the scheduler must store the value of the ‘next instruction’ register in that
process’s workspace. The process pointed to, from the ‘“front’ register, then
has its program pointer restored into the next instruction register. This new
process will then continue its execution (after the appropriate change to
the value in the ‘front’ register has been made). When a suspended process
becomes executable again it is placed on the back of the queue using the
‘back’ register.

The context switch involved in moving from running one process to
executing another is very quick, due to three important factors:

1. The scheduler is a hardware facility.

2. When a process is suspended there are no values on the evaluation
stack that need be stored (or restored when it is next executed).

3. The transputer has been designed to have a minimum number of
shared registers; the on-chip RAM is effectively a collection of
non-shared registers.

The second factor comes from the rule that a process cannot be suspended
during the evaluation of an expression (which would use the stack). Even
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Registers Workspaces Program

Front P -

Back

Cc ' R

Workspace

Next
instruction

Operand 5

Figure 8.2 Support for parallel program structures.

the appearance of an interrupt (EventIn) will not cause a process to be
suspended whilst using the stack (see below). Together these factors
provide the basis for an efficient occam-engine.

The workspace for the PAR process itself will keep a count of the number
of non-terminated component subprocesses. As a process terminates it
executes an ‘end process’ instruction that decrements this counter value.
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It should be clear from the above description that the execution of a
PAR process entails a run-time overhead. Queues must be set up and
registers initialized. Although this overhead is not usually significant (it is
of the order of one microsecond) it implies that a series of independent
assignment processes should be coded as a $EQ not a PAR. Only where there
is channel interaction should a PAR be used to introduce non-determinacy
(see Chapter 3).

Earlier, the PRI PAR constructor was introduced as a method of giving
different priorities to sets of processes. The transputer will support two
priority levels; the PRI PAR should therefore only have two components:

PRI PAR
PAR
~—~ set of high priority processes
PAR
-~ set of low priority processes

If there are more than two processes in a PRI PAR, all but the first is given a
low priority.

To accommodate the priority levels there are two sets of front and
back registers, one for each priority queue. Interestingly, the transputer
implements two distinct scheduling algorithms for these two priority levels.
If a high priority process is executable then it, of course, has preference
over any low priority process. Moreover, once executing, the high priority
process will continue to execute unless it terminates, stops, waits for
communication, or delays. It cannot be pre-empted.

By comparison the low priority scheduler uses a round-robin
algorithm. If no high priority processes are executable a low priority one
will be chosen; it will then execute until:

e It terminates, stops, waits for communication, or delays.
@ A high priority process becomes executable.

e It has been executing for between 1 and 2 timeslices (see below) and
has reached the end of a control structure.

A timeslice will be of the order of 820 microseconds.

Each low priority process will therefore have a quantum of processing
time before returning to the back of the executable queue. The scheduler is
thus, in a broad sense, fair.

A low priority process can be pre-empted by a high priority one that
was previously suspended but has become executable. This could occur if:

e It was delayed and the delay time has how expired.

@ It was waiting to communicate with a low priority process that has now
reached this point of communication.
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is restricted to a fixed number of bits (the word length of the host
processor) then there is a clear trade-off between the accuracy of the clock
and the range of times supported.

For high priority processes the value of the clock increments every 5
cycles of the clock input. Typically this will mean that the timer has a
resolution of one microsecond but will cycle round in just over 71 minutes
on a 32-bit machine. It follows that the delay statement: ‘

Time ? AFTER e
—— where Time has been declared a TIMER

can accommodate a value of e of up.to 35 minutes. The comparison
between e and the local clock is performed using a modulo comparison to
ensure a correct result.

To get an increased range, the resolution for low priority process is
increased to 64 microseconds. The result is that a cycle of approximately 74
hours is available. A process can thus delay for up to 37 hours.

Processes that are delayed are placed on a single queue. The queue is
ordered according to the time each process should become executable
again. It is therefore always the front process in the queue that is next to
have its delay expire. Processes can be added to the queue at any point.

8.4 Implementation of occam channels

The transputer’s instruction set provides operations for inputting and
outputting messages (it is also possible to enable an input when it forms
part of an ALT guard). There is, necessarily, a clear distinction between the
implementation of internal channels (within a single transputer) and
external ones that must be mapped onto links. Essentially, the address of
the channel enables this distinction to be apparent to the processor
executing the I/O operations. Within this section the implementation of
‘internal’ and ‘external’ channels will be considered separately.

8.4.1 Internal channels

When a channel is defined a single word of storage is allocated. This
memory location is loaded with a value that is distinct from any process id.
Let that value be represented by the word empty. Figure 8.3 illustrates
this channel word and the workspaces of the two processes, P and 4, that
use this channel.

“As it is an internal channel and only one process can be executing at
any instance on that transputer then either p or @ will want to communicate
first (the direction of the communication at this point is irrelevant).
Assume P gets to the communication first; it will find that the value in the
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empty

Channel word

Workspace for P Workspace for @

Figure 8.3 An empty channel.

channel word is empty, thus signifying that it is first and that it must wait.
The actions it takes are as follows. It places, in the channel word, the id for
process P (this will be a pointer into the workspace for P) see Figure 8.4.
Then it stores the value of the next instruction register in its workspace
and finally it instructs the scheduler to run another process. P is now
suspended; it is not executing and it is not in the queue of executable
processes.

Channel word

Workspace for P Workspaéé for @

Figure 8.4 The first process arrives at the channel.

Eventually (presumably) process a reaches the point at which it is
ready to communicate with the channel. The channel word now does not
contain empty and therefore @ knows that P is already waiting and a
communication can take place, see Figure 8.5.
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P

Channel word

A
4

Workspace for P Workspace for @

Figure 8.5 The second process arrives at the channel.

The process @ has access to the id of P and can therefore initiate the
transfer, regardless of the direction in which the transfer takes place. The
message is copied (single object or block), P is added to the queue of
executable processes and & can continue. Note that @ was never suspended
and that the message, whether it was a single item or a block transfer,
passed directly between P and ¢; it did not go ‘through’ the channel.

8.4.2 External channels

If the address of the named channel, in an input or output message
operation, indicates that the channel is an external one then the main
processor delegates responsibility for the communication to an autono-
mous link interface. This link interface both transfers the message and,
when completed, reschedules the process. Figure 8.6 illustrates the

Link interface Link interface

Workspace for P Workspace for &
Figure 8.6 A channel across a link.
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structure of a communication between processes P and & which are now
executing on adjacent transputers. Both processes are suspended and the
two link interfaces are exchanging data in the direction dictated by the
program. The protocol used to transfer data is based on the serial
transmission of byte values. It is therefore possible for two transputers of
different word lengths to be connected by such a link.

Each link interface has three special registers, in which it stores, when
activated, a pointer to the workspace of the process involved, a pointer to
the message (source or destination) and a count of the number of bytes to
be transferred. The link interface can store the message in the workspace,
of the destination process, by DMA (Direct Memory Access) and can then
add the suspended process to the queue of executable processes. Both of
these actions take place without any direct interference with the main
processor. Note, that due to processes not being allowed to share variables
the use of DMA by the link interfaces is reliable. There cannot be any
other active process wishing to use these memory locations. Indeed the
only shared locations that need further protection are those dealing with
the dispatch queues.

As a result of this autonomy a single transputer can, effectively, be
processing and communicating at the same time. Indeed it is estimated
that, in the extreme case, if all four links were transferring data in both
directions then the maximum downgrade in the performance of the
processor would be about 8%. (This assumes that all executing processes
were at the same priority.) In the average situation the interference will be
negligible.

This is a particularly significant point. Most analysis undertaken on
multiprocessor systems assumes that each processor, at any instant, must
either be communicating or processing, but not both. The architecture of
the transputer gives considerable extra computer power over these
systems.

8.5 Program distribution and start-up

The mapping of a channel onto an external link is expressed, within the
occam program, by ‘placing’ both ends of the channel at appropriate
addresses. This is done in conjunction with the use of a PLACE PAR construc-
tor (see Chapter 3). Consider for example the following program outline:

CHAN OF INT Pipe:
PAR
WHILE TRUE
SEQ
—- some actions including
Pipe ! X == for some data value X
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-WHILE TRUE
SEQ
Pipe 7 Y
-~ other actions

The program consists of two main concurrent processes and they commu-
nicate via a single channel called pipe. If the decision is made to execute
these two processes on different (but linked) transputers then the code
becomes:

CHAN OF INT Pipe:
PLACE PAR
PROCESSOR 0
PLACE Pipe AT Link0:
WHILE TRUE
SEQ
~= gome actions
Pipe ! X
PROCESSOR 1
PLACE Pipe AT Link2:
WHILE TRUE
SEQ
Pipe 7 Y
-— actions

The channel Pipe is allocated within each process, with the constants used
(tink0 and Link2) being declared elsewhere to have the appropriate values.
Figure 8.7 illustrates this structure (the second link on transputer 1 is
physically joined to the zero link on transputer 0).

3 3
2 0 2 0
1 1
Transputer 0 Transputer 1

Figure 8.7 Two linked transputers.

This example can be expanded to illustrate the use of a replicator with a
PLACED PAR. Figure 8.8 shows a pipeline of processes all of which are
generated from the same PROC (process).
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Figure 8.8 A pipeline of processes.

The occam code for this pipeline is:

[161CHAN OF INT pipe:
PAR i = 0 FOR 15
process(pipelil,pipeli + 1])

If this is to be mapped onto a series of connected transputers (numbered 0,
.,14) the code would have to be changed to the following:

[161CHAN OF INT pipe:
PLACED PAR i = 0 FOR 15
PROCESSOR 1 ]
PLACE pipelil AT LINKO:
PLACE pipeli + 1] AT LINK3:
process(pipelil,pipeli + 11)

One of the difficulties with multiprocessor systems is to distribute the
software to the correct destination and to coordinate the powering up of all
of the system’s components. A single transputer, following power up, can
be conﬁgured to bootstrap in either of two ways:

® Program available in ROM contained in the transputer’s address
space, or

® Program obtained down one of the serial links.

If the latter method is chosen then the first data to appear down any link
will be taken to be code which, when loading is complete, will be executed.
The other three links will be ignored until the program itself wishes to
communicate with them.

An occam program is compiled on a host processor and then distri-
buted to the target (the multi-transputer system) usually down a single
link. The host processor, which could actually be a multi-transputer system
itself, has an internal graph representing the topology of the target. It can
therefore calculate the route by which the modules of code can reach the
correct destinations. For example Figure 8.9 illustrates how a 3 X 3 matrix of
transputers (without wrapped around links) could receive their programs if
the host is connected to one of the corner transputers.
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Host

Figure 8.9 The initialization of a process matrix.

If each transputer is loaded with different modules then they must
store their own code and then forward the subsequent modules down the
appropriate links. Alternatively if the modules are generated from a PAR
replicator, which will often be the case, then it is not necessary for the host
to generate many copies of the code. Each transputer can be instructed to
forward a copy of its own module.

With complex and large topologies care must be taken at start-up to
ensure that a transputer does not receive data, from an initialized and
executing neighbour, before it receives the program to deal with that data.
If this eventuality were allowed to arise then the transputer would attempt
to execute the data!

8.6 Summary

The above discussions have illustrated the close association between the
occam language and the transputer. This modern fast processor provides
registers for manipulating concurrent processes and instructions that can
be easily generated by a compiler. Communication between processes is
undertaken simply and efficiently whether or not the processes are on the
same transputer. The result of these provisions is a truly flexible and
versatile system. Not only can the number and topology of the processors
be changed easily but the software can be distributed to these various
structures with the minimum of disturbance. This can, however, only be
done if the software itself was written (or transposed — see Chapter 10) to
have significant parallelism within it.
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The distribution of sequential programs to multiprocessor systems is
non-trivial and usually leads to poor return on the investment of extra
processors. Moreover the rewriting of programs to match new processor
structures is itself error prone and costly. An occam program can be
distributed to a collection of transputers without affecting the logical
behaviour of the program, but only if sufficient concurrency was expressed
in the program in the first place. The transputer supports an efficient
implementation of concurrency even on a single transputer system; this
allows programs, from the outset, to be designed with maximum con-
currency.

The occam programmer should think of processes and synchroni-
zations, not sequences of statements. As all actions in occam are under-
taken by processes it is the PAR construct that is the more natural. The seq is
a restricted form that imposes a sequential synchronization on the specified
processes; it should only be used when the algorithm being implemented
requires it. If an occam program is designed with considerations of
concurrency paramount then the execution of that program on a single
transputer, a pipeline or array of transputers, a tree structure or an
arbitrary topology of transputers should be feasible.

This argument is equally valid for other processors as well as the
transputer.



CHAPTER 9

Input and Output in
‘Occam

As is usual with a modern high level language, input and output are not
considered to be primary features in occam. Instead a method of defining
implementation dependent high level I/O is provided. In addition facilities
for managing low level I/O are supported. This chapter considers both of
these approaches. '

9.1 High level input and output

The basic model for I/O in occam is for channels to pass data between the
program and the program’s environment. A typical program will therefore
have many internal channels and a few external ones. The external
channels will be half in the program and half outside. Such channels are
specified by explicitly allocating the channel:

allocation = PLACE name AT expression:

process = allocation
process

An example of the allocation of a channel is:

CHAN OF P Fred:
PLACE Fred AT X:

where X is an implementation dependent constant; ? is any protocol. On some
of the occam development systems the value 1 indicated the VDU screen and
2 the keyboard. A simple program to echo characters is therefore:

CHAN OF ANY Screen:

PLACE Screen AT 1:

CHAN OF INT Keyboard:

PLACE Keyboard AT 2:
124
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INT char:
WHILE TRUE
SEQ
Keyboard ? char
Screen ! char

Note that although this program echoes characters, the internal data type is
an INT (i.e. the ASCII representation of the character). As was indicated
earlier the names Screen and Keyboard are not significant.

Other channel addresses can be used to interact with files and
peripheral devices. If an implementation supports such facilities then
there will be addresses defined. A more useful interface to a program’s
environment, however, would be achieved if standard library PRoCs were
available that had the appropriate channel definitions hidden. Such
library PRoCs are provided with the transputer development system
(TDS).

9.2 Low level input and output

In order to construct device drivers for external entities a language’ must
provide:

1. Facilities for interacting directly with control régisters.
2. Facilities for handling interrupts.

As the transputer does not provide special instructions for controlling
external devices, occam will only cater for (the more common) memory
mapped I/O. It is possible to mix transputer assembler and occam to
code unusual external devices but this provision is beyond the scope of
this book. Moreover, many devices can be catered for in occam without
recourse to this technique. An example is given below. It should also be
noted at this point that it is acceptable to write PROCs in other high level
languages; for example the transputer implementation of occam can
support C, Pascal and FORTRANT77. I/O routines could therefore be
programmed in another language entirely. _
With memory mapped I/O the registers that form the interface
between the main processor and the device are deemed to be located at
specific addresses within the processor’s memory space. To enable an
occam program to use such registers they must also be in the program’s
address space. The registers themselves are used to give instructions to
the device and to receive, or transmit, data. As an ‘example consider a
common analogue to digital converter (ADC). The converter samples
some environmental factors such as temperature, it translates the
measurements it receives and provides scaled integer values on a
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register. One such converter has a 16-bit control register with the following
structure:

Bit Name Meaning

0 A/D Start Set to 1 to start a conversion.

6 Interrupt Set to 1 to enable interrupts.
Enable/Disable

7 Done Set to 1 when conversion is complete.

8-13 Channel The converter has 64 analogue inputs,

the particular one required is indicated
by the value of the channel.

15 Error Set to 1 by the converter if device
malfunctions.

In order to read a particular analogue input a channel address (not to be
confused with an occam channel) is given in bits 8 to 13 and then bit 0 is set
to start the converter. When a value has been loaded into the results
register the device will interrupt the processor. The error flag will then be
checked before the results register is read. During this interaction it may be
desirable to disable the interrupt.

To handle this device the control software must, therefore, have access
to the results and control registers and be able to handle the interrupt.
-Such facilities are not usually found in a high level programming language
but are available in Modula, Modula-2 and Ada (as well as occam).

When programming an embedded system in a concurrent programming
language it is conceptually useful to extend the process model so that the
external devices are considered to be ‘hardware processes’. An entire system
therefore consists of both hardware and software processes. It follows that the
primitives used to give communication and synchronization between
software processes should, if possible, also be used to give communication
and synchronization between hardware and software processes.

As the occam model of interprocess communication is based on
message passing, to the exclusion of shared variables, it is this style that is
also applied to hardware processes. Registers are mapped on to ports that
are conceptually similar to channels. For instance if a 16-bit register is at
address X then a port is defined as:

PORT OF INT16 P:
PLACE P AT X:

Interaction with this register is obtained by reading or writing to this port:
P! A ——uwrite value of A to the port

P?B ~-read value of port into B
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A device driver will loop round receiving requests and providing
results; it is programmed as a PROC with a two channel interface. When an
address (for one of the 64 analogue input channels) is passed down ‘input a
16-bit result will be returned via channel output. There are however further
output states that must be represented; these extra states indicate error
conditions. It follows that output must be defined to pass a variant protocol:

PROTOCOL Out

CASE
Correct ; INT16 —- correct output
RangeError -~ input out of range
AdcError ~-—error flag set in ADC
AdcOffLline -~ ADC does not respond

CHAN OF INT16 request:
CHAN OF OQut return:
PROC ADC(CHAN OF INT16 input, CHAN OF Out output)
—= body of PROC, see below
PRI PAR
ADC(request,return)
PAR
-= rest of program

A PRI PAR is desirable as the AD¢ must handle an interrupt €ach time it is
used. Note, that three of the four variants do not have a data value
associated w1th them, they consist only of the tag field.

Within the body of the PrRo¢ the interrupt channel (EventIn channel) and
the two PORTS must first be declared:

PORT OF INT16 Control.Register:

PLACE Control.Register AT #AA12:

PORT OF INT16 Buffer.Register:

PLACE Buffer.Register AT #AA14:

CHAN OF ANY Interrupt:

PLACE Interrupt AT Event.In:

INT16 Control.R: —-—variable representing control buffer

Where #4412 and #AA14 are the defined addresses for the two registers-(in
hex).

To instruct the hardware to undertake an operatlon requlres bits 0 and
6 to be set on the control register; at the same time all other bits apart from
those between 8 and 13 (inclusive) must be set to zero. This is achieved by
using the following constants;

VAL INT16 zero IS O:
VAL INT16 Go IS 63:

Having received an address from channel input its value must be assigned
to bits 8 through 13 in the control register. This is accomplished by using a
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shift operation. The actions that must be taken in order to start a
conversion are therefore:

INT16 Address:

SEQ
input ? Address
IF
(Address < 0) OR (Address > 63)
output ! RangeError == error condition
TRUE
SEQ

Control.R := zero

Control.R := Address << 8
Control.R := Control.R \/ Go
Control.Register ! Control.R

Once an interrupt has arrived the control register is read and the error flag
and done checked. To do this the control register must be masking against
appropriate constants:

VAL INT16 Done IS 128: .
VAL INT16 Error IS MOSTNEG INT16:

MOSTNEG has the representation 1000000000000000.
The checks are thus:

IF ’

((pone /\ Control.R) \/ (Error /\ Control.R)) <> zero
~= @rror

TRUE
—~- appropriate value is in buffer register

The device driver is structured so that three attempts are made to get a
correct reading before passing the off-line error condition back to the
requesting process.

The code for the PROC can now be given:

PROC ADC(CHAN OF INT16 input, CHAN 0F Qut output)
PORT OF INT16 Control.Register:
PLACE Control.Register AT #AA12:
PORT OF INT16 Buffer.Register:
PLACE Buffer.Register AT #AA14:
CHAN OF ANY Interrupt:
PLACE Interrupt AT Event.In:
TIMER CLOCK:
INT16 Control.R: —-—variable representing control buffer
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INT16 Buffer.R: == variable representing results buffer
INT Time:
VAL INT16 zero IS O:
VAL INT16 Go IS 65:
VAL INT16 Done 1S 128:
VAL INT16 Error IS MOSTNEG INT16:
VAL. INT Timeout IS 600000: ~-or some other appropriate value
INT Any:
INT16 Address,i:
BOOL Found,Error:
WHILE TRUE
SEQ
input ? Address
IF
(Address < 0) OR (Address > 63)
output ! RangeError =~ error condition
TRUE
SEQ
i=
Error := FALSE
Found := FALSE
WHILE (3 < 3) AND ((NOT Found) AND (NOT Error))
~=— Three attempts are made to get a reading from
—=—the ADC. This reading may be either correct or
~-1is flagged as being an error.
SEQ
Control.R := zero
Control.R := Address << 8
Control.R := Control.R \/ Go
Control.Register ! Control.R
CLOCK ? Time

ALT
Interrupt ? Any
SEQ
Control.Register ? Control.R
IF
(Done /\ Control.R) \/ (Error /\ Control.R} <> zero
SEQ
Error := TRUE
output ! AdcError —-error condition
TRUE
SEQ

Found := TRUE
Buffer.Register ? Buffer.R
output ! Correct ; Buffer.R
CLOCK ? AFTER Time PLUS Timeout
-~ The device is not responding
ii=i+
IF
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(NOT Found) AND (NOT Error)
output ! AdcOfflLine

TRUE
SKIP

In this code although the device driver is running at a high priority the
client process is not and hence the driver will be delayed until the client can
read from return (which is mapped on to the CHAN parameter output). With
input devices that generate data asynchronously this delay could lead to the
driver missing an interrupt. To overcome this the input data must be
buffered. A suitable circular buffer was illustrated in Section 3.6.2 and
Figure 3.6. Remember that because the ALT in the buffer cannot have
output guards another single buffer item is needed.
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Figure 9.1 A real-time device driver.

To ensure that the device driver is not delayed by the scheduling
algorithm for the low priority client process the two buffer processes (as
well as the driver) must execute at high priority. This is illustrated in
Figure 9.1.



CHAPTER 10

Transforming Occam
Programs

One of the attractive features of the occam programming language is that
its semantics can be formally stated. Although such a description is beyond
the scope of this book a denotation semantics for occam (an earlier
version) can be found in Roscoe (1985). The availability of such an analysis
makes it possible formally to specify and verify occam programs. In
particular the ability to prove that a program is deadlock free would have
obvious benefits.

Another use of formal techmques is in the transformation-of one
occam program into another that is, in some sense, equivalent. The
motivations for transforming a program are:

@ To change a clear but inefficient program into an efficient but perhaps
obscure one.

@ To change a sequential program into a concurrent program to exploit
parallel hardware.

© To change a concurrent program into a sequential one for more
efficient execution on a single processor.

e To change a physically infeasible program into a physically feasible
one. ‘ '

The latter transformation may be needed to map a program onto a
transputer system where there are only four links available for commu-
nication between distributed sections of the code.

Informally a transformation can be said to change the structure of a
program without changing its meaning. This does not, however, imply that
the behaviour of the transformed program and its original will be identical;
in particular the speeds at which they execute will differ (this being one of
the objectives in performing the transformation).

To perform a single complex transformation to a sizeable program in a
way that guarantees that the program will not become invalid is far from
132
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being a trivial undertaking. Rather it is better to apply a series of simple
transformations each of which clearly leaves the program essentially the
same as before. These simple transformations can be expressed as ‘laws’;
although the name is perhaps misleading. Example laws are ﬂlustrated
below. A complete and formal description of these laws can be found in
Roscoe and Hoare (1986). Even if one is not concerned with trans-
formation techniques, these laws are useful in re-emphasizing some of the
important properties of the language components.

10.1 Laws of occam

The analysis of occam programs is made much easier if the programs are
assumed to be canonical; that is, there are no variable names re-used. This
can always be achieved by substitution, or formally, within occam, by
abbreviations (see Chapter 6).

To simplify the presentation of occam syntax, brackets will be used;
for example, rather than: :

SEQ
A
B
C

we will write, for this chapter only,
SEQ (4,B,C)

Where a construct is considered to have an arbitrary number of com-
ponents (i.e. n) it is written as follows:

n n n n '
PAR Pi  SEQSi  ALT gipi IF bipi
i=1 i=1 i=1 i=1

Two simple equivalence rules can now be stated (they are numbered for
later reference):

sEQ () =sKIp , : @
PAR () = SKIP : @

The equality symbol implies that the program fragment on the right is
equivalent to, or essentially the same as, the fragment on the left. For most
laws equality also implies symmetry (i.e. the left is also equivalent to the
right) but this is not always the case.

Laws (1) and (2) merely state that an empty sequence (or PAR block) is
equivalent to SKIP.
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10.1.1 Associativity

It was noted in Chapter 3 that both the SEe and PAR constructs are
associative:

SEQ(P,Q,R) = SEQ(P,SEQ(Q,R)) 3)
PAR(P:Q!R) = PAR(P:PAR(QaR)) (4)

where P,¢ and R are arbitrary processes.
Nested 1Fs and ALTs are also associate:

IF(C1,IF(C2),C3) = IF(C1,C2,C3) (5)
ALT(G1,ALT(G2),63) = ALT(G1,62,63) (6)

where ¢ is a collection of (b,p), Boolean expressions and subprocesses; and
6 is a collection of (g,p), guards and subprocesses. If an IF process does not
contain a Boolean expression then it is impossible for any of the Boolean
expressions to evaluate TRUE. Similarly, if there are no guards in an ALT none
can be ready. It follows that:

IF( ) = STOP (7)
ALT( ) = STOP (8)

Law (5) applies to one form of nesting If constructors where the inner IF is
in place of the usual (b,p). Another form of nesting is derived if an inner IF
is one of the p subprocesses. Again it is possible to remove the nesting:

IF(C, b1, IF(b2,p)) = IF(C, IF(b1 AND b2, p)) ®

Law (9) is only valid if the inner IF is the last subprocess; alternatively it is
valid in any position if the inner IF is complete. A complete If constructor is
one that is guaranteed to have a Boolean expression that evaluates TRUE.
Any IF process can be made complete by adding at the end:

TRUE
STOP

All that this addition does is make the s70p condition explicit, rather than
have it implied implicitly by the semantics of the IF.

In the general case the inner If will contain more than one (b,p) com-
ponent. To illustrate the use of laws (5) and (9) consider the following code:

IF
A>0
IFI1=1F0R3
BLI1 >0
ch ! A ~= for some channel ch
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TRUE
¢ch 1 0

The replicator is merely a shorthand notation and can be expanded:

IF
A>0.
IF
BL1]
ch !
BL2]
ch !
BL3]
ch !

R A AT v
> O > 0O > O

TRUE
ch !0

In this form the inner IF is neither complete nor the last subprocess; in
order to apply law (9) it must first be made complete:

IF
A>0
IF

B[1]
ch !

BL2]
ch !

BL3]
ch !

TRUE
STOP

- W s W e WV
o = R _ e i = ]

TRUE
ch ' 0

Law (9) can now remove the first level of nesting:

IF
IF
A>0AND BT >0
ch 1A
A> 0 AND BL21 > 0
ch ! A
A >0 AND BE31 > 0
¢ch 1 A
A > 0 AND TRUE
STOP
TRUE
¢ch 10
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The second level of nesting is removed by applying law (5) to give:

IF

A> 0 AND B[1I > 0
ch ! A

A > 0 AND BL21 > O
ch t A

A> 0 AND BL31 > 0
ch 1 A

A>0D
STOP

TRUE
¢ch 1 0

In the above the Boolean expression before the $707 has been reduced by
removing the superfluous AND TRUE.

10.1.2 Symmetry

A number of constructs within occam are not dependent upon the order in
which their subcomponents are expressed. The most obvious example of
this is the PAR:

n n
PAR Pi = PAR PH(i) (10)
=1 i=1

where II is any permutation of the values {1,2, ..., n}. A PAR process with n
subprocesses can therefore have these subprocesses rearranged, arbitra-
rily. It is said to be symmetric. The same applies to the ALT:

n n
ALT Gi = ALT GII(1) (11)
i=1 i=1

The standard IF processes cannot be rearranged as it is the first TRUE
Boolean expression that determines which subprocess is executed. How-
ever if the Boolean expressions are pairwise disjoint then a permutation is
possible. The Boolean expressions are said to be pairwise disjoint if only
one can be TRUE for any set of values for the -associated variables. For
example the following IF has this property:

IF
X>0
Y := 1
X=10
Y :=0



TRANSFORMING OCCAM PROGRAMS 137

The following law thus applies to the 1f:

n n .
IF bi,pi = IF bII(i),pl(i) (12)
i=1 i=1 '

provided that bi AND bj = TRUE implies i = j.

10.1.3 Replacing SEQ by PAR

One obvious means of increasing the parallelism in an occam program is to
replace, where allowed and where useful, a sEa construct by a PAR:

SEQ(P,R) = PAR(P,R) (13)

This equivalence is correct provided the set of variables (and channels)
used in P and R are disjoint. This rule is, in fact, slightly stronger than that
required, for if ? and R both read a common variable then the replacement
can still take place.

Perhaps the simplest transformation between a $Eq and a PAR comes
from the equivalence of the basic channel operations:

PAR
c!X
c?2y

and the assignment:
Y =X
This can be represented as a law as follows:
PAR(CC ! X,C?Y) =Y:=X ' (14

Another form of this law is obtained if a simple assignment is replaced by
an assignment through a channel:

. SEQ(R,x i=y,Q) = :
CHAN OF PRO Z: , ,
PAR(SEQ(P,Z ! ¥),SEQ(Z ? x,Q)) o (15)

where y is a variable of  (only) and x is a variable of q (only). P and Q have
no variables in common. PRO is the appropriate protocol.
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The new channel introduced, Z, must have a distinct name. For
example the code:

SEQ
ch1 7 A
GetX(A,X)
Y := X/ 2.0
GetZ(Y,1)
¢h2 11

where GetX is a procedure call that evaluates X when given A and GetZ does
similar with Y and z; could be changed to:

——definition of new channel New.Chan
PAR
SEQ
chl 7 A
GetX(A,X)
New.Chan ! X / 2.0
SEQ
New.Chan ? Y
GetZ(Y,1)
“ch2 ! 12

This rule enables a sequence of processes that can be split into two distinct
parts, that are only linked by an assignment statement, to be transformed
into two parallel processes linked via a channel.

10.1.4 Laws of declaration

Not only are there laws to govern the transformation of one construct into
another but there are others that deal with declarations. For example
declarations are associative:

Tas (Tb:P)=Ta,b: P (16)

where P is some process and T is any valid type.
Declarations can also be eliminated if they are not used:

. TaP=pP N an

if a is not used in P.

It is useful if declarations that are embedded within a program can be
moved to the beginning of the program. This can be achieved by applying a
series of laws that link declarations and the program constructs. There are
two that involve SEa:

SEQ(T a: P,Q) = T a: SEQ(P,Q) ‘ (18)
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Applying law (20) transforms this to:

SEQ
in 7 X
WHILE TRUE
SEQ
Y =X %X
out 'Y
in 7 X

Law (13) now can be applied to the final two processes:

SEQ
in 7 X
WHILE TRUE
SEQ
Y = X %X
PAR
out 'Y
in? X~

The result of performing these two transformations is to have a program in
which the two actions that can lead to delay are expressed as being
concurrent. A delay at one point in the pipeline will not therefore

immediately delay the entire pipeline.

10.1.6 Unravelling a replicated SEQ

Law (20) which applies to a WHILE loop can also be used, in a slightly

different form, to reorder a replicated seq. Let:

SEQ i = 1 FOR n
SEQ
P(i)
adi)

be represented by:
n .
SEQ(Pi,Qi)
i=1
then:
n n-1

SEQ(Pi,Qi) = SEQ(P1,SEQ(Qi,Pi + 1),Qn)
i=1 i=1

(21)
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If Qi and Pi + 1are independent then a PAR could also be introduced. The
following example illustrates how law (21) could be applied:

SEQ i = 1 FOR 16

SEQ
ALiY = CLi] + i
BLil := AL41 + BLil

This becomes:
SEQ

AL1Y = C[11 + 1

SEQ i = 1 FOR 15
SEQ

BLil := ALil1 + B[i]
ACi + 11 := COY + 1145 + D)
BL16] := AL161 + BL16]

10.1.7 Distributivity

PAR and SE@ can be related by a law that can be seen as a form of
distributivity:

PAR(SEQ(A,B),SEQ(C,D))
= SEQ(PAR(A,C),PAR(B,D)) (22)

Note that the necessary conditions implied by the left hand fragment
(namely B must follow A; D must follow ¢; 4 is independent of ¢ & b; and B is
independent of ¢ &D) are all satisfied by the right hand side. For example:

PAR
SEQ
ch1 7 A
B := A * 16
SEQ )
ch2 2 ¢
D= % 16

is equivalent to:

SEQ
" PAR
ch1 7 A
ch2 7 ¢
PAR
B

D

A *x 16
¢+ 16
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Consider another example:

PAR
SER
I {
P1
SEQ
c?y
p2

In this code P1 is some process that updates X, and P2 is a process that uses
¥. By applying law (22) we obtain

SEQ
PAR
c!X
c?y
PAR
P1
p2

If we then apply law (14) this reduces to

SEQ
Y := X
PAR
P1
p2

10.1.8 Summary

In the above section a number of laws have been introduced that allow
transformations to be applied, reliably, to small sections of occam code.
Many of the laws are, in themselves, obvious and, perhaps, trivial. But
together they represent a powerful set of techniques. Moreover, unlike
compiler optimization techniques, they apply to program source and yield
valid language forms. The laws themselves can be formally specified which
makes it possible for some of the transformations to be undertaken by
appropriate software tools.

Moreover, these laws are not only useful in transforming individual
programs but they can be employed to test whether two programs are
actually equivalent. This is done by transforming both programs to what is
known as a normal form. A normal form for finite occam programs is
described by Roscoe and Hoare (1986).

To illustrate how a combination of transformations can be applied, an
example of matrix multiplication will be given. This example will be
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expressed in terms of a systolic action and is an adaptation of analysis given
by May and Taylor (1984).

10.2 An example of a systolic algorithm

One of the reasons for having concurrency within the programming
language is to be able to represent (and ultimately implement) algorithms
that are destined for parallel execution. A systolic algorithm is one that has
a collection (often a matrix) of identical processes through which data
flows. The term systolic is used as there is an analogy here with blood
flowing around the human body. In a ‘pure’ systolic algorithm each of the
parallel processes executes an identical sequence of instructions. They can
therefore be implemented on SIMD (Single Instruction Multiple Data)
architectures. More flexibility is nevertheless possible if the actual instruc-
tions executed are dependent upon the data flowing through.

A system of transputers is ideally suited to this form of algorithm; each
transputer can hold a process (generated from a single PRo¢) and the data
can flow down the links. Although each transputer is running the same
process, in the sense that they have all been generated from the same PROC,
the code may contain IF processes, for example, which will mean that
different instructions are being executed on different transputers.

One example of a systolic algorithm is the multiplication of two
matrices where each node of the resulting matrix is represented by a single
process. Two M X M square matrices (A and B) are multiplied as follows:

R=A*B

where any particular element of R is calculated as a sum of a series of
length M: "
@, j) = E a(i, k)* b(k, j)

k=1
For example:

r(4,5) = a(4,1) * b(1, 5)
+ a(4,2) * b(2,5)
+ ...
+ a(4, M) * b(M, 5)

A parallel multiplication algorithm maps each element of R onto a process.
Each process receives a flow of values (representing matrices A and B)
which it uses and then passes on. This is illustrated in Figure 10.2. The code
for each process can therefore be generated from a single PRroc.
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Figure 10.2 A process matrix.

PROC Mult(CHAN OF INT N,S,E,W)
INT Result:
INT A,B:
SEQ
Result := 0
SEQ i = 0 FOR M
SEQ
PAR
N?A
W?B
Result := Result + (A * B)
PAR
S 1A
E!B

# pairs of values are read, Results is updated accordingly and the values
are passed on.

For an M X M matrix, ® * (8 + 1) channels are required in the vertical
and horizontal planes. A matrix of channels is thus required:

[M* (M + 1)]CHAN OF INT Vert,Horz:
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The processes that generate the two matrices to be multiplied can be
defined by two PROCS, GenerateA and Generates.

PROC GenerateA (LICHAN OF INT Avalues)
PROC GenerateB (LICHAN OF INT Bvalues)

The form these PROCs take is of little interest here; they are therefore not
given. To multiply the two matrices requires the following harness
program: ‘

VAL M is 8 :
M % (M + 1)ICHAN OF INT Vert,Horz:
PAR -

PAR i = 0 FOR M
PAR j =0 FOR M
Mult(VertD(M % 1) + 3, VertL(M * i) +(j + D],
HorzD(M % i) +j1,Horz[(H + (i + 1)) + j1)

10.3 Transforming the matrix example

The PrRoC given above for the Mult procedure consists, essentially, of a
repeat of three actions; input new values, update the variable result,
output the values. This is a sequential structure. The power of the systolic
approach is in executing each instance of Mult in parallel. It is however
possible to transform the code given for the PRoC so that it is more parallel.
In particular it would be useful to execute all four channel operations in
parallel. Although for this simple example it may be obvious how to
change the program, the objective of this discussion is not the particular
example under investigation but to illustrate how a program may be
changed by the systematic application of the laws discussed earlier in this
chapter.

An examination of the Mult PROC shows that most of its execution is
focused on the replicated sta:

SEQ i =0 FOR M
SEQ
PAR
N?A
W?B
Result := Result + (A * B)
PAR :

s A
E!B
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The last two elements of the sEq are independent and can therefore be
executed in parallel (law 13):

SEQ@ i = 0 FOR M
SEQ
PAR
N?A&A
W?8B
PAR
Result := Result + (A * B)
PAR
ST A
E!B

By the law of association (law 4) the final PAR can be removed; the last five
lines of the above then become:

PAR
Result := Result + (A * B)
S 1A
E!B

The replicated sEa now applies to two subprocesses and can therefore be
unravelled by law (21):

SEQ
PAR
N?7A
W?8B
SEQ i =0 FORM -1
SEQ
PAR
Result := Result + (A * B)
ST A
E!B
PAR
N?A
W78
PAR
Result := Result + (A * B)
ST A
E! B

We now concentrate on the reads from N and ¥ (inside the new replicated
SEQ):

PAR
N7A
W?B
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It is a trivial rule (not included above) that a channel read:
N?7A
is equivalent to:

INT Atemp:
SEQ
N ? Atemp
A := Atemp

for some new variable Atemp. The above PAR can therefore be transformed
to:

PAR
INT Atemp:
SEQ
N 7 Atemp
A := Atemp
INT Btemp:
SEQ
W ? Btemp
B := Btemp

The declarations can be moved by application of laws that are similar to
(18) and (19):

INT Atemp,Btemp:
PAR
SEQ
N ? Atemp
A := Atemp
SEQ
W ? Btemp
B := Btemp

By law (22) this PAR(SEQ,SEQ) can be changed to a SEQ(PAR,PAR):

INT Atemp,Btemp:
SEQ
PAR
N ? Atemp
W ? Btemp
PAR
A := Atemp
B := Btemp



148 PROGRAMMING IN OCCAM 2

It is wasteful to do the two assignments in parallel; the last PAR can
therefore be replaced by a sta (law 13). The law of association (law 3) can
then be applied to yield:

INT Atemp,Btemp:
SEQ
PAR
N ? Atemp
W ? Btenmp
A := Atemp
B Btemp

The replicated st has now become (again the declaration of the te'mporary
variables has been moved):

INT Atemp,Btemp:
SEQ i =0 FOR M -1

SEQ -—Y

PAR
Result := Result + (A * B)
STA
E!B

PAR
N 7 Atemp
W 7 Btemp

A := Atemp

B := Btemp

We are, at last, at the point at which we can apply the last two
transformations. The first two components of the $ta marked by Y are
independent and can therefore be replaced by a PAR (law 13). Moreover
this PAR then has the form PAR(PAR,PAR); the inner PARs can hence be
removed by the associativity rule (law 4) to give:

INT Atemp,Btemp:
SEQ § = 0 FOR M - 1

SEQ

PAR
Result := Result + (A * B)
S 1A
E!B
N 7 Attempt
W 7 Btemp

A := Atemp

B := Btemp

The Pro¢ for Mult has thus been transferred to the following structure.
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PROC Mult (CHAN OF INT N,S,E,W)
INT A,B:
INT Result:
SEQ
Result := 0
PAR
N?7A
W78
INT Atemp,Btemp:
SEQ 1 =0 FOR M -1

SEQ
PAR
Result := Result + (A * B)
ST A
EI!B
N ? Atemp
W ? Btemp
A := Atemp
B := Btemp
Result := Result + (A * B)
PAR
S 1A
EI!B

All the important actions associated with this procedure (the four channel
transfers) are now parallel. Each node in the matrix can read in new values
concurrently with outputting old values.

Although the transformations applied above have generated many
pages of description, the result is a new program that we can be assured is
equivalent to the old. Nothing has been done that could have invalidated
assertions applied to the original code. These techniques (although con-
siderable research effort is still being applied to them) promise to be of
considerable importance to the occam programmer.



CHAPTER 11

Occam and Ada -
A Comparison

One of the most important developments over the last decade in comput-
ing has been the emergence of the Ada programming language. Many
readers will no doubt be familiar with this language and will have noted
that there are clear similarities between the features that occam supports
and the tasking model of Ada. This chapter compares the two languages in
terms of their basic structures and their models of concurrency. Some prior
knowledge of Ada is necessarily assumed but no new material about occam
is introduced.

The Ada language is defined by an ANSI standard (Ada Reference
Manual, 1983) and many introductory books are available (for example
Barnes, 1984). Its tasking facilities have been thoroughly investigated
(Burns et al., 1987) and there are various tutorial texts (Burns, 1985;
Gehani, 1984).

11.1 Sequential language structures

Ada is a large language with Pascal-like control structures, and re-entrant
procedures and functions. It was designed in response to requirements
specified by the US Department of Defense (DoD), that were primarily
concerned with the programming of embedded systems. Ada supports a
range of scalar types (integers, Booleans, characters and floating point and
fixed point reals), multidimensional arrays (with dynamic bounds) and
records (with variant components). In addition it enables objects to be
constructed dynamically by providing heap management facilities. It also
allows programmers to create new types by either specifying all values
objects of that type can take (enumeration types) or by deriving them from
predefined types.

From even this brief description it should be clear that there is a much
richer collection of data types in Ada than there is in occam.
150
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begin ~— Ada
proct;
proc?;

end;

In occam concurrent execution is expressed simply as:

PAR
proct
proc?

To achieve concurrency in Ada requires the introduction of two tasks:

declare
task one;
task two;
task body one is
begin
procl;
end one;
task body two is
begin
proc2;
end two;
begin
null;
end;

The actions that the two tasks undertake are defined by the task bodies.
Task one therefore executes a call to proc1 and task two similarly calls proc2.
Both tasks start their concurrent executions prior to the main program
executing the null statement.

It is possible to write an Ada program that contains no concurrency. A
significant subset of Ada represents a powerful sequential programming
language. The task object and the message passing mechanism are
additions to this sequential model, although the interaction between the
tasking and the non-tasking features is non-trivial. Occam cannot be
described in this way; the concept of process is basic to the language.

An occam program is a hierarchy of processes; primitive processes are
grouped together to form higher order processes and some, such as an
instance of a non-trivial procedure, will have a complexity comparable with
an Ada task. At the topmost level the complete occam program is viewed
as a single process. Ada tasks are similarly hierarchical and the main
program can be considered to be a task. This hierarchy cannot, however,
be extended down to the primitive level.
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11.2.1 Representation

Tasks in Ada are named and syntactically consist of two distinct parts; a
specification and a body:

task example;

task body example is

~— internal declarations
begin

—~— sequence of statements
end example;

Tasks are not parameterized; the only way to pass information to a newly
created task is to communicate with it. The use of PrRocs with arbitrary
parameter lists to encapsulate a concurrent object is clearly more
expressive.

A task may be declared at any program level and are created implicitly
after entry to the scope of their declarations. An instance of a task can also
be created directly by the action of the ‘new’ operator; thereby giving a
structure that is fully dynamic. As was indicated earlier occam has a static
structure.

11.2.2 Termination

Both Ada and occam allow a process to execute an infinite loop and
thereby never terminate. This structure is often used in embedded systems.
Natural termination, when all actions have been performed and all
subprocesses have terminated, can be observed in both languages. In
addition to this ‘normal’ case an Ada task can terminate if:

1. an exception is raised but not handled (or handled only at the outer
level); or

2. a terminate alternative on a select statement (see below) is executed
when the parent of the task wishes to terminate and all subtasks of that
parent have either terminated or are similarly waiting on terminate
alternatives; or

3. it is aborted.

Occam does not provide an abort facility or a terminate alternative. If an
error occurs then that process becomes equivalent to the primitive process
sTop. It follows that a wayward process, or a collection of deadlocked
processes, cannot be forcibly terminated. However, the existence of an
abort facility is one of the more controversial features of Ada. Its inclusion
reflects the need to be able to remove wayward tasks and yet its presence
within the language is itself a source of unreliability (see 11.4).
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11.3 Synchronization and communication

Tasks in Ada may communicate through any variable that is in scope. The
responsibility for providing mutual exclusion over the use of such variables is
the user’s. This structure is further complicated by considerations of
implementation which allows, for optimization purposes, copies of shared
variables to be kept in each task’s memory space. These copies are updated
at defined synchronization points that lead to rules being required to govern
the use of such variables between synchronization points. A compiler is not
required, by the language definition, to recognize when these rules are
broken. The program is, nevertheless, deemed to be ‘erroneous’.

Shared variables are not meant to be the primary means of commu-
nication in Ada. The facility is included because ‘to disallow shared
variables seems to be a constraint which would be unwise in certain critical
circumstances’ (Ichbiah et al., 1979). However as Welsh and Lister (1981)
commented ‘to allow them is equally unwise in others’.

" Occam’s association with the transputer has meant that from the outset
it has used a model of concurrency that precludes shared variables. Its
development from CSP and the requirement for a usable formal model of
the language has also mitigated against the use of shared objects.

It follows therefore that Ada and occam both base their commu-
nication and synchronization on message passing. There are however
important differences between the two models that the languages imple-
ment; these differences will be discussed below.

11.3.1 Process naming

Occam processes are not named, it is therefore necessary during commu-
nication to use indirect naming. This indirect naming is symmetric.

All normal tasks in Ada are named; the only exception to this are
‘anonymous’ tasks with which communication is only possible using shared
memory. Ada uses direct, asymmetric naming:

T.E(X); ~—-— pass the value contained in variable X
~=~ to the entry E in task T
accept E (V : in <some type>) do —=— read from any calling
-~ task into variable Y the
Y 1= V; ~—value given on the entry call
end E;

Entries within Ada tasks are defined within the task specification:

task T is
entry E (V : in <some type>);
~— other entries

end T;
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Asymmetric naming in Ada supports the use of the client/server paradigm.
Servers can be designed, coded and tested without knowledge of the exact
client population; this cannot be done directly in occam. However, as a
result of this Ada structure any entry may have a queue of calls outstand-
ing. This queue (which is handled in a FIFO manner) presents an overhead
to the run-time system. As occam channels are one-to-one there can be at
most only a single request waiting, hence no queue mechanisms are
required.

11.3.2 Synchronization model

Occam implements a standard rendezvous; a channel can only be used in
one direction and we therefore have synchronous message passing. Ada
provides an extended rendezvous with data passing in both directions (if
required). The model is remote invocation (Burns ef al., 1987):

accept E (X : in Xtype; Y : out Ytype) do
-= use X
-=— construct Y
~end E;

Note that, not only is data passing in both directions but processing is being
carried out during the rendezvous. There is thus the possibility of an error
manifesting itself while the rendezvous is being executed. For example, the
execution of an infinite loop will prohibit the rendezvous from termination.’
If an exception is raised, but not handled, within a rendezvous then the
exception is propagated to both partners in the communication.

11.3.3 Message structure

Ada uses the same parameter passing model for entry calls as it does for
procedure calls. Any number of objects may be passed and each can have
any legal structure including predefined and user defined types; variant
records, linked lists and multidimensional arrays. Occam now allows
arbitrary collections of objects to be communicated within a single block
transfer. However, Ada still has a more extensive collection of data
structures to use during communication and processing.

11.3.4 Selective waiting

With any concurrent programming language basing its interprocess com-
munication facilities on synchronous message passing, or remote invo-
cation, there is a need to allow a process to wait for one of a number of
possible communications. To this end Ada provides the select statement
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which can be compared with the occam ALT process. For example the
following program segments both allow a process to wait for one of two
integer communications:

select
accept €1 (I : integer) do
.value 1= I;
end C1;

or
accept €2 (I : integer) do
value := I;
end (2;
end select;

ALT
€1 ? value ——value is of type INT
SKIP
€2 7 value
SKIP

If there are outstanding calls on two or more branches of the construct then
neither language defines which call is to be accepted. The algorithm is said
to be arbitrary. There is, however, a terminology difference between the
two constructs in respect of the concept of guard. Both languages use a
Boolean expression to ‘close off’ or avoid certain actions. However, in Ada
a guard is only this Boolean expression:

select
when <Boolean expression> => - guard
accept E( ... ) do
<action>
end E;

In occam the term ‘guard’ refers to the more conventional structure which
includes the Boolean expression and the channel communication.

Only receive messages are allowed with the standard Ada select and
the occam ALT. The expressive power of Ada is however increased by
allowing data to pass in either or both directions. An occam guard can only
contain an input operation.

11.3.5 Timeouts

Both languages allow a process to express a timeout on a receive
operation. In Ada the delay is given relative to current time; occam uses
absolute time and therefore the present value of the local real-time clock
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must be accessed. To obtain a value of the local real-time clock in Ada
involves calling the function cLotk provided in the standard package
CALENDAR.

11.3.6 Else clanses and terminate alternatives

In addition to waiting selectively for one of several entry calls (or delaying
for a timeout) Ada allows the programmer to state that another sequence
of statements should be executed if there are no outstanding entry calls on
any open accept statements:

select
accept E(...) do

end E;
else

<sequence of statements>
end select;

Occam does not support this feature directly but it can be constructed using
priorities.

The client/server paradigm encourages the programmer, in Ada, to
adopt a style of programming in which tasks are either active or passive.
Active tasks make entry calls but do not have entries themselves; passive
tasks, such as resource controllers and buffers, accept entry calls but do not
make them. A common form for a passive task has a select statement
positioned within a continuous loop. To make task termination easier, Ada
provides a ‘terminate’ alternative that can be incorporated into a select
statement. The effect of this alternative is to terminate the task if there are
no more active tasks available to use it, and all other passive tasks are
similarly waiting on terminate alternatives. In this situation all passive
tasks and their parent will terminate together.

The effect of using a terminate alternative is to reduce the possibility of
deadlock at the termination of the program or some subprogram withinit. Ina
section of occam code (i.e. a PAR process) all processes must be instructed to
terminate when close-down is required. To achieve this, in the correct order
so that neighbours do not finish before all communication has completed, can
present a non-trivial problem to occam programmers (see Chapter 6).

11.3.7 Families and replicators

If there is a large number of message sources to choose from, the explicit
coding of each alternative becomes long-winded. To deal with a collection
of similar message sources Ada provides for a family of entries. These are
defined with the task specification:
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task T is
entry E(0...N)(<entry_parameters>);
end T;

and ‘are used either by explicitly writing out each family entry:

select
accept E(D)(...) do

end E;
or
accept E(1)(...) do

end E;
or
accept EC2)(...) do
end E;
or
accept E(3)(...) do

end E;
end select;

or in conjunction with a loop statement to analyse the entire family:

for i = 0 to N loop
select
accept E(i)(...) do

.

end E;
else
null;
end select;
end loop;

Occam provides a replicator for giving a more concise form:
ALT i = 0 FOR N
chlfil 7 X

—= process

This solution allows an array of channels, of arbitrary length, to be
associated with the ALT.
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As well as differing in syntax these two approaches also have impor-
tant semantic differences. The occam model gives equal weight to all the
alternatives and allows the process to be suspended if there are no ready
guards. By comparison, the concise Ada structure polls each of the family
members in turn. The algorithm is not arbitrary and, more significantly,
involves a busy loop if there are no outstanding requests. This is one of the
situations discussed by Gehani and Cargill (1984) in their analysis of the
select statement. They believe that Ada encourages the use of algorithms
that incorporate polling.

11.3.8 Priority

There are situations where the arbitrary nature of the selective wait
statement is not adequate for an algorithm being proposed. Often it is
desirable to give priority over particular alternatives. In Ada this is
achieved by using the count attribute which gives the number of outstand-
ing calls there are on any particular entry. Consider a select statement with
three branches:

select
accept HIGH;

or
when HIGH'count = 0 =>
accept MID;

or
when HIGH'count
accept LOW;

end select;

"

0 AND MID'count = 0 =>

As well as being verbose for select statements with many alternatives, this
structure is not guaranteed to implement the required priority algorithm.
A high priority task may be in the queue (on the select) when the guards
are evaluated but be aborted (or removed because of a timed entry call —
see next section) before being accepted. The result of this is to close off the
MIb and LoW entries even though there is no longer an entry call on HIGH. A
description of a reliable algorithm for Ada is given by Burns (1987).

In recognition of the need to provide a non-arbitrary structure, occam
supports a priority version of the ALT.

11.3.9 Timed and conditional entry calls

There are two ways in which the Ada select statement can be seen to have
more flexibility than the occam ALT. It was noted above that while both
allow a process to wait for one of a number of external calls the Ada
rendezvous allows data to pass in both directions, while the occam
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structure is restricted to communication only in the direction of the
message. In addition to this, Ada provides a variant of the select statement
that allows a task not necessarily, to commit itself to an entry call.

In occam once a process attempts to write to a channel it will be
suspended until the appropriate process reads from that channel. Even if
this partner process has terminated the writer process will remain suspen-
ded. If the corresponding task has terminated, in Ada, an exception will be
raised in the caller; this will allow it to continue. Alternatively, if the
rendezvous has not yet started, a task can make a conditional or timed
entry call. A conditional entry call is cancelled if not immediately accepted;
a timed entry call is cancelled if not accepted within a specified time period.

It should, however, be noted that the select statement in Ada is not
symmetric; a task cannot select between a number of entry calls, or
between a mixture of entry calls and accept statements. These structures
can only be programmed by the use of a busy loop containing a number of
select statements. The construction of a symmetric select statement for
Ada is discussed by Francez and Yemini (1985).

11.4 Programming transactions

It is convenient when considering the interaction between processes to
introduce the notion of a transaction. A transaction can be defined to be
the totality of communication and synchronization necessary to undertake
one logical interaction. Neither Ada nor occam directly support transac-
tions. However, one of the motivations for the use of remote invocation in
Ada is to code a single logical function as one rendezvous. Unfortunately it
has been shown (Burns et al., 1987) that many useful transactions cannot
be programmed as a single rendezvous. This is due to the selective wait
statement in Ada being based on avoidance rather than condition waiting.
Within a monitor a process may start executing a procedure but be
suspended if the conditions are not appropriate for completion. A model
based on avoidance can prohibit an action from starting, by use of a guard,
but has no method of suspending the action once it has commenced.
The guard in Ada does not have access to the ‘in’ parameters of the
entry call. It is therefore necessary in some cases to accept the call in order
to ascertain whether the transaction can be accommodated. If it cannot,
then the rendezvous must be terminated, and the enquirer asked to call
again. Hence a number of transactions require a two-rendezvous
algorithm. In occam many more transactions require this double interac-
tion because of the one-directional nature of the communication.
Although the two rendezvous transaction is more common in occam it
can, nevertheless, be programmed simply and reliably. This is not the case
with Ada (Keeffe et al., 1985). The difficulty arises because nothing can
be assumed about the behaviour of the calling task between the two
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Ada provides the primitives for constructing and placing objects at
designated addresses. The software/hardware communication therefore
takes the form of a shared variable interface.

Occam does not allow for machine code inserts although support for
PROCSs in other languages (i.e. C, Pascal and FORTRAN77) and transputer
assembler will be provided. In dealing with the control of external devices
occam consistently disallows the use of shared variables. It extends its
message based communication model to incorporate memory mapped
input/output by the use of ports (see Chapter 9).

11.6 Programming distributed systems

Most programming languages designed with the specific intention of
supporting distributed application incorporated the notion of a virtual
node. A virtual node is an abstraction of a physical node within the
distributed system and therefore defines the granularity of distribution
(Burns et al., 1987). Communication between virtual nodes is ultimately
supported by message passing via the underlying communication subnet.
Within a virtual node, if more than one process is allowed, communication
may use shared memory.

Occam’s processes do not share memory so all that is required to
support distribution is a mechanism by which several processes may be
associated with one node. This is achieved by the PLACED PAR construct.

The Ada language’s philosophy towards distributed programming is
not so clear. Although designed with a requirement to be executed on
multi-computer systems, the presence of shared memory communication
and the lack of a virtual node construct, directly supported by the
language, makes distribution difficult.

Two main candidates have been suggested for consideration as virtual
nodes in Ada: the task and the package. The task usefulness as a virtual
node is limited because it is unable to encapsulate data in the same way as a
package, and cannot be a library unit. The Ada package on the other hand
is supported by separate compilation, library units, and exception handling
facilities. A restricted form of package can be used as a virtual node. Such
a package must not allow external access to its variables, and so only task
specifications and type declarations may be visible from it. Furthermore,
access variables (pointers) may not be declared as parameters to entries.
Alternatively, one can restrict the package specifications to contain only
procedure declarations, and implement a remote procedure call interface
between virtual nodes. In this case one can use tasking to obtain
concurrency and synchronization within each virtual node, and use the
remote procedure call mechanism for communication between nodes. This
model is clearly very different from that of occam.
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11.7 Discussion

Although Ada and occam are both concurrent programming languages
their representations of parallelism, communication and synchronization
are sufficiently different to give rise to two quite distinct languages. As a
sequential programming language Ada clearly has a number of features
that are superior to those presently available in occam. However, the Ada
tasking model is not without its critics, which makes a comparison with
occam worth while. Occam provides a much simpler collection of language
features, when compared with Ada; it does not support shared variables,
aborts, timed or conditional message sends, or an extended rendezvous.
Inevitably this results in a language that is less controversial, has a sounder
formal base and is more efficiently implementable.

And yet the main distinction between the languages is not what
communication features are supported but their differing views as to the
nature and notion of a process. In occam the concept of process is

- fundamental to the structure of the language. An occam program can only
be seen as a hierarchy of processes. This is not the case with Ada where the
tasking model is, essentially, an addition to a self-contained sequential
language.



Appendix A

Reserved Words

The following is a list of the reserved words in occam:

AFTER
ALT

AND

AT
BITAND
BITNOT
BITOR
BOOL
BYTE
CASE
CHAN
ELSE
FALSE
FOR
FROM
FUNCTION
IF

INT
INT16
INT32
INT64
Is
MINUS
MOSTNEG
MOSTPOS
NOT

OF

OR

PAR
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PLACE
PLACED
PLUS
PORT
PRI
PROC
PROCESSOR
REAL
REAL32
REALG4
RECORD
REM
RESULT
RETYPES
ROUND
SEQ
SILE
SKIP
STOP
TIMER
TIMES
TRUE
TRUNC
TYPE
VAL
VALOF
WHILE
WORKSPACE
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The Syntax of Occam 2

B.1 Top-down description

The following is a top-down description of the syntax of occam 2. In this
description {process} means zero or more processes on separate lines;
{1, object} means one or more objects separated by commas; and €, ; object}
means zero or more objects separated by, on this occasion, semicolon. The
symbol | means ‘or’; and = is a metasymbol apart from its use in the
definition of a replicator.

process =  SKIP

STOP

action

construction

block

instance

CASE selector
{selection}

action = assignment
| input

case input

| output

assignment = variable := expression
| variable list := expression list

variable list = {; , variable}

expression list = {; , expression}
| Cvalof
)
| name({, , expression})
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input = channel ? input itenm
| channel ? {; , input item}
| channel ? CASE tagged list
| timer ? variable
| timer ? AFTER expression
| port ? variable

input item = variable
| variable :: variable

case input = channel ? CASE
{variant}

guarded case input = boolean & channel ? CASE
{variant}

variant = tagged list
process
| specification
variant

tagged list = tag
| tag ; {y ; input item}

tag = name
output = channel ! output item
| channel ! {; ; output item}
| channel ! tag
| channel ! tag ; {; ; output item}
l

port ! expression

output item = expression
| expression :: expression

variable = element

channel = element

timer = element

port = element

construction = loop
conditional
sequence

parallel
alteration
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loop = WHILE boolean
process

boolean = expression

conditional = IF
{choice}
| IF replicator
choice

choice = guarded choice

| conditional
specification
choice

guarded choice = boolean
process

replicator = name = base FOR count
base = expression

count = expression

SEQ
{process}
| SEQ replicator
process

sequence

PAR
{process}
| PAR replicator
process
| PLACED PAR
{placement}
PLACED PAR replicator
placement
PRI PAR
{process}
PRI PAR replicator
process

parallel

placement = PROCESSOR expression
process

alternation = ALT
{alternativel
| ALT replicator
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APPENDIX B:

alternative =

THE SYNTAX OF OCCAM 2

alternative
PRI ALT
{alternativel
PRI ALT replicator
alternative

guarded alternative
alternation

case input

guarded case input
specification
alternative

guarded alternative = guard

guard input

process

| boolean & input
| boolean & SKIP

block

scope

specification

| allocation

scope

specification =

scope = process

declaration =

type =

declaration
| abbreviation
| definition

type name:

primitive type

| PORT OF type
| array type
| record type

primitive type

= CHAN OF protocol

TIMER
BOOL
BYTE
INT
REAL32
REALG4
REAL
INT16
INT32
INT64
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protocol = name
| simple protocol
| ANY

array type = [expressionltype

record type = ({; , type})

abbreviation = specifier name IS element:
| VAL specifier name IS expression:

specifier = primitive type
| Lexpressionlspecifier
| [Ispecifier
definition = specifier name RETYPES element:

VAL specifier name RETYPES expression:
TYPE name IS type:
RECORD name IS record type:
PROC name ({, , formall})
body

| {1 , type}FUNCTION name({, , formal}) IS expression list:
| €7, type}FUNCTION name({, , formal})
function body i

PROTOCOL name IS simple protocol:
PROTOCOL name IS sequential protocol:
PROTOCOL name
CASE
{tagged protocol}

formal = specifier name
| VAL specifier name

body = process
function body = valof

valof =  VALOF
process
RESULT expression list
| specification
valof
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simple protocol = type
| type::[Itype

sequential protocol = {; ; simple protocol}

tagged protocol = tag
| tag ; protocol

allocation = PLACE name AT expression:

instance = name ({, , actual})

actual = element
| expression

selector = expression

1

selection = expression
process
| ELSE
process

element = element[subscript]
| Lelement FROM subscript FOR subscript]
| [{,element}]
| ({,element})
| name

subscript = expression

expression = monadic.operator operand
operand dyadic.operator operand
conversion

operand

HOSTPOS type

MOSTNEG type

operand = element
| literal
| [{; , expression}t]
| ({; , expression})
| (expression)
| name({y, , expression})
| ¢ valof
)
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B.2 Alphabetical definition of the syntax

abbreviation = specifier name IS element:
| VAL specifier name 1S expression:

action assignment
| input
case input

| output

element
| expression

actual

allocation = PLACE name AT expression:

alternation = ALT
{alternativel}

ALT replicator
alternative

PRI ALT
{alternative}

| PRI ALT replicator

alternative

alternative = guarded alternative
| alternation
| case input
| guarded case input
| specification
alternative

array type = [expressionltype

assignment = varfable := expression
| variable list := expression list

base = expression

block = specification
scope
| allocation
scope

body = process

boolean = expression
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byte = 'character’

case input = channel ? CASE
{variant}

channel = element

choice = guarded choice
| conditional
| specification
choice

conditional = IF
{choice}
| IF replicator
choice

construction = loop
conditional
sequence
parallel
alteration

conversion =  type operand
| type ROUND operand
| type TRUNC operand

count = expression
declaration = type name:

definition = specifier name RETYPES element:
VAL specifier name RETYPES expression:
TYPE name IS type:
RECORD name IS record type:
PROC name ({z , formall})
body

| {1, type}FUNCTION name({, , formal}) IS expression list:

| {; , type}FUNCTION name({, , formal})
function body

| PROTOCOL name IS simple protocol:
PROTOCOL name IS sequential protocol:
PROTOCOL name
CASE
{tagged protocol}
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dyadic.operator = + | - | # | /| REMN | PLUS | MINUS
| TIHES | /Y | W/ | >¢ | > | << |
| AND | OR | = | < | < | > ] <= ] »=
element = element[subscript]
| Lelement FROM subscript FOR subscript]
| [{,element}]
| ({,element})
| name
exponent = + digits
| = digits
expression = monadic.operator operand
operand dyadic.operator operand
conversion

I
|
| operand
| HOSTPOS type
| MOSTNEG type
expression list = {; , expression}

| (valof

)
| name({y , expression})

formal = specifier name
| VAL specifier name

function body = valof

guard =  input
| boolean & input
| boolean & SKIP

~guarded alternative = guard
process

guarded case input = Boolean & channel 7 CASE
{variant}

guarded choice = Boolean
process

input = channel ? input item
| channel ? {; , input item}
| channel ? CASE tagged list
| timer ? variable
| timer 7 AFTER expression
| port ? variable
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input item = variable
| variable :: variable

instance = name ({p, , actuall})

integer digits

| #digits

literal integer

| byte

| integer(type)
| byte(type)
| real(type)
| string
| TRUE
| FALSE

loop = WHILE Boolean
process

monadic.operator = = | NOT | SIZE

operand = element

literal

[{;, expression}]
({;, expression})
(expression)

name({,, expression})
( valof

)

output = channel ! output item

| channel ! {; ; output item}

| channel ! tag
| channel ! tag ; {; ; output item}
| port ! expression

output item = expression
| expression :: expression

parallel = PAR

{process}

| PAR replicator
process

| PLACED PAR
{placement}

| PLACED PAR replicator
placement

| PRI PAR
{process}
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| PRI PAR replicator
process

placement = PROCESSOR expression
process

port = element

primitive type =  CHAN OF protocol
| TIMER
| BooL
| BYTE
| INT
| REAL32
| REALG64
| REAL
| INTI6
| INT32
| INT64

process =  SKIP

STOP

action

construction

block

instance

CASE selector
{selection}

protocol = name
| simple protocol
| ANY

real = digits.digits
| digits.digitsEexponent

record type = ({; , type})
replicator = name = base FOR count
scope = process
selection = expression
process
| ELSE

process

selector = expression
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sequence =  SEQ
{process}
| SEQ replicator
process

sequential protocol = {; ; simple protocol}

simple protocol =  type
| type::[Itype
specification = declaration
| abbreviation

| definition

specifier = primitive type
| L[expressionlspecifier
| [Ispecifier

subscript = expression

tag = name
tagged list = tag

| tag ; {; ; input item}
tagged protocol = tag

| tag ; protocol
timer = element

type = primitive type
| PORT of type
| array type
| record type

valof =  VALOF
process
RESULT expression list
| specification
valof

variable = element

variable list = {; , variable}

variant = tagged list
process

| specification
variant
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Appendix C
Representation of Reals

A value of type REAL32 or REAL64 is represented according to ANSI/IEEE
standard 754-1985. For a value of type REAL32 this means that there is an
8-bit exponent, e, and a 23-bit fraction, f. The value, v, is positive if the
sign bit is equal to 0; otherwise it is negative. Its magnitude is given by:

(2**(e — 127)) * 1.f if 0 <eande < 255
(2** - 126) * 0.f ife=0and f <> 0
0 ife=0and f=0

A value is effectively infinity if e = 255andf = 0. Alternatively itisnot a
number if e = 255 and f has any value other than 0.

With type REAL64, a value has an 11-bit exponent and a 52-bit fraction.
The corresponding magnitudes are:

(2**(e — 1023)) * 1.f if 0 < e and e < 2047

(2** - 1022) * 0.f ife=0and £f<>0

0 ife=0and f=0
infinity if e = 2047 and £ = 0
not a number if e = 2047 and £ <> 0

The result of a real arithmetic expression, e, is the value of e rounded to the
nearest value of the appropriate real type. If x any y are real then the result
of xReMy is x — (y * n) where n is the result of x / y rounded to the nearest
integer value.
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Predefined Procedures

The following are predefined arithmetic procedures that provide fractional
multiplication, arithmetic shifts, word rotations and the primitives to
construct multiple length integer arithmetic and multiple length shift
operations. They are provided as standard with the transputer’s occam
development system.

LONGADD
LONGSUM
LONGSUB
LONGDIFF

LONGPROD -
LONGDIV

SHIFTRIGHT
SHIFTLEFT
NORMALIZE
ASHiFTRIGHT
ASHIFTLEFT
ROTATERIGHT

ROTATELEFT

signed addition with a carry in.

unsigned addition with a carry in and a carry out.
signed subtraction with a borrow in.

unsigned subtraction with a borrow in and a borrow out.

unsigned multiplication with a carry in, producing a double
length result.

unsigned division of a double length number, producing a
single length result.

right shift on a double length quantity.

left shift on a double length quantity.

normalize a double length quantity.

arithmetic right shift on a double length quantity.
arithmetic left shift on a double length quantity.
rotate a word right.

rotate a word left.
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Appendix E

Earlier Versions of
Occam

If this is occam 2 there must have been an occam 1! (In fact not only was
there occam 1 but before that, there was a preliminary occam.) It may,
therefore, be of interest to the reader briefly to describe the earlier version
of the language and to consider why it had to change (i.e. expand). In
terms of the language described in this book, occam 1 had the following
restrictions:

It did not support floating point representations.
It only supported one dimensional arrays.
It did not contain records.

It would only allow one object to be communicated per rendezvous.

A T

It had no concept of abbreviation and the parameter passing model
was less well defined.

6. It had no functions.

7. Access to the real-time clock was achieved in a manner at variance
with the basic model (it used a one-to-many channel).

Essentially occam 1 was a language that had only a single data type.
Objects were defined to be vARs (variables) and were usually accessed as
integers although Boolean and character interpretations were allowed.

On these peripheral aspects of the languages occam 1 and occam 2 are
quite distinct. However, the core language features are almost identical.
The basic process model is the same, as are the primitive processes and the
constructors. It has therefore not been difficult for the programmers who
were familiar with the original language to adapt to occam 2.

Occam 1 was never meant to be a final version of the language as its
functionality did not meet the capabilities of the transputer. In particular
the transputer could support:
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e floating point representation;
® block memory transfer on a single processor;

® block memory transfers, via a link, from memory on one transputer to
memory on another.

Occam 2 has been designed to allow the programmer to utilize these
features.

Perhaps the greatest difficulty that the new features presented was to
* design a concise syntax for communicating objects of different size and
type down the same channel. In occam 1 all channels passed single, word
long, objects; there was no need to specify a type or protocol with the
channel. Occam 2’s type model has necessitated the addition of a protocol
field; the syntactical form of which took a number of design interactions to
get to the version that is described in this book.

In the Introduction it was described how the name occam had been
chosen because the language was no more complicated than was absolutely
necessary. This was certainly true with occam 1 whose definition fitted on
to one side of A4 paper. Occam 2 will still fit on to one piece of paper; but
the printing is a little smaller!
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