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Preface

Traditionally computer programming has been sequential in nature. There
has been the need to write a program to follow an exact sequence of steps to
attain the required result. As parallel computers become more common, and
the operation of existing computers itself becomes more parallel, there is a
need to have the ability to write parallel programs. This book provides an
introduction to programming in one such parallel language, namely, occam
2. In the text it will become apparent that the nature of this language is such
that writing a parallel program becomes easier to understand and write than
to achieve the same operation in a sequential language.

Since occam 2 was intended to be the assembly language for use on the
transputer which has been developed by Inmos Ltd, an overview of the
operation of a transputer and its characteristic novel architecture is provided
in Chapter 2. This illustrates many of the important features that the lan-
guage uses to achieve parallelism. However, a detailed understanding of the
material of that chapter is not essential to the rest of the text and the less
discerning reader may omit the chapter. Central to the parallel pro-
gramming is the concept of a program consisting of a series of processes,
whose execution may be achieved in parallel. The communication and syn-
chronisation between consistuent processes provide the framework on which
the language is developed.

The contents of the book have been developed from courses of lectures
given to undergraduates on concurrency. It aims to provide support for
practical programming in concurrency using the language occam 2. No
previous experience of writing parallel programs is assumed, but a general
knowledge of programming techniques is beneficial.

Several practical examples are developed throughout the text to illustrate
a few of the wide range of suitable applications for parallel programming
techniques. A bibliography is provided where the reader may consult in
more depth some aspects of the language.

The authors wish to acknowledge the assistance and encouragement of
colleagues. In particular we thank several from the Department of Computer
Science at the University of Sheffield for discussions in the early stages of
the preparation of this text.
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1 Introduction

The development of computer applications has always depended to a large
extent on the speed of the processor units available. Since the construction
of the first electronic computers, the speed of operation has increased by
approximately a factor of ten each decade. This improvement in per-
formance over recent decades is shown in figure 1.1. By and large this
improvement in performance has been achieved by making the individual
components work faster. These developments are becoming increasingly
& expensive and difficult as technology begins to be constrained by funda-
mental physical limitations such as the velocity of light. New improvements
in present generations of integrated circuits are likely to provide smaller
returns, in terms of increased speed.
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Figure 1.1 Development of conventional computer systems



2 occam 2 on the transputer

The demand for computing power shows no signs of abating as people in
all areas of technology enmhance their understanding by more detailed
analysis methods. Typical present computer applications use processor
speeds of 1-10 million instructions per second (MIPs). In the future VLSI
offers the potential of much greater circuit complexity, but without sustain-
ing the necessary increases in circuit performance. The sort of processing
power that is needed to satisfy ‘fifth generation software’ will need processor
speeds in the region of 10 0001000 000 MIPs. A number of techniques
have been tried to provide this increased performance, and future develop-
ments will undoubtedly lead to some increase in the speed of conventional
processors; nevertheless a single processor will still not be able to provide
the processing speed required.

The traditional perspective of machines based on the von Neumann
architecture has been founded on the concept that processing is expensive in
comparison to memory. A typical von Neumann computer architecture
consists of one processor and one memory area. Both data and instructions
are stored in this memory area and so the processor needs almost constant
access. A program counter keeps the address of the next instruction and this
is updated as the program is executed. Such machines execute single instruc-
tions on single data items and are referred to as SISD machines (Single
Instruction, Single Data). This has led to the so-called ‘von Neumann bottle-
neck’. An obvious strategy for improving the performance is to introduce
some measure of parallelism in the process by the provision of additional
processors. An idealistic parallel computer is one in which each processor
has access to shared global memory. However, adding an additional
processor to the system does not necessarily double the processing power.
The introduction of two processors which share the same memory for
communications purposes means they must use memory on a bus. There is
thus a processor-memory bottleneck, and the expected gain in performance
is not achieved. Such a bottleneck is illustrated in figure 1.2 where there are
four processors accessing four areas of the memory space. This leads to
problems of contention; for example, if both processors need to access the
same memory location at exactly the same time then some sort of system
must exist to decide which processor gets access to the memory and which
processor has to wait until the other has finished. Such a scheme of arbitra-
tion for two processors can exist without any significant loss in processing
power. The addition of further processors makes the problems of arbitration
more difficult, and increases in performance are not linearly related to the
number of processors.

An important trend at present is the production of parallel processors at a
relatively low cost. Parallel processing machines, referred to as MIMD
(Multiple Instruction, Multiple Data) machines, have existed since the early
1950s when the Univac 1 was introduced. Parallel processing can exist in a
compuler in a variety of ways, for instance in the use of pipelining, array




Introduction 3

P P P P
i | 1 }
v v Y v
M M M M

Figure 1.2 Diagram illustrating von Neumann bottleneck

processors, functional units and multiprocessors. The concept of a pipeline
can be regarded as a series of processing elements connected into a ‘pipe’,
through which data is allowed to flow. The processing elements are arranged
in such a way that each successive element performs the next stage of the
program. This allows a measure of parallel processing whilst retaining a
simple data flow and controlled use of communications. Pipelining, in its
simplest form, is a situation where the ‘fetch’ instruction and the ‘execute’
instruction operate in parallel. The Cray machine, for example, uses the
pipelining technique, and pipelining is commonly seen in bit-slice designs
and microcoded systems.

e In array processing several processors execute the same instruction
but on different data originating from the memory associated with each
processor — these are usually referred to as SIMD machines (Single
Instruction, Multiple Data).

e Functional parallelism allows several functional units such as adder,
boolean logic, and multiplier to operate simultaneously on different
data.

e Multiprocessing allows several processors, each executing its own instruc-
tion stream but operating on data which may be shared between all
Processors.

Multiprocessing sounds attractive and is used, for example, in the Cray
XMP48. Difficulties can arise in that if the right topology is not used for the
interconnection of the processors then the net result of parallel processing
may be to slow the response down. However, multiprocessing on a large
scale is now a distinct possibility since the increased functionality given by
increasing the number of components on a single chip has not yet been
exhausted.

In spite of the attractive benefits of parallel processing in terms of
increased performance, there are major problems relating to communica-
tion, synchronisation and the scheduling of the work between the different
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processors. Communication is concerned with getting the correct data to the
processors at the correct time for their efficient use. The processors need to
communicate with each other and hence share a common bus. As the
number of processors increases, the system quickly reaches the state where a
processor spends most of its time waiting to use the bus. The problem of
dividing a program between several processors is complex, and typically a
situation exists where processors finish their tasks at different times and may
be left idle waiting for other processors to complete their tasks. Problems of
sychronisation can occur with the processor which is dedicated to con-
trolling the other processors and detecting when the other processors have
finished their tasks. In order to overcome these problems many scheduling
algorithms have been developed to try and improve performance.

‘One development in the parallel processing area is provided by a new
computer architecture developed by Inmos Ltd as a microprocessor. This
new processor is called a transputer (TRANSistor comPUTER) and
includes not only processor and memory components, but also a channel, or
LINK, for communicating with other transputers and to other devices. This
link and its properties comprise one of the fundamental distinguishing
features of this novel architecture. Communication across the link takes
place only once both ends are ready, so that events are synchronised. The
synchronisation of events was one of the major problems in early attempts at
parallel processing. For each transputer there are four such links, which
means that they can be interconnected in a wide range of different configura-
tions, and are therefore very well suited to multiprocessor systems. The basic
transputer processor speed is in the region of 10 MIPs, but because trans-
puters do not share the same communication bus the overall processing
power increases linearly with the number of transputers added; an array of,
say, 100 such transputers should provide a speed in the region of 1000 MIPs.
In the case of conventional processors the overall processing power
improvement starts to diminish with the involvement of around six
PIoCessors.

The transputer architecture uses processes as the fundamental standard
software building block, and it provides a direct implementation of a process
in hardware. A process is an independent computation which can com-
municate with other processes being executed at the same time. Communica-
tion between processes running on transputers is achieved by using explicitly
defined channels. A process can itself consist of a number of sub-processes
and the transputer can implement these sub-processes by time-sharing, with
special instructions being provided to support communication. Processes
and an example of their interconnection are shown in figure 1.3
The transputer provides a number of links to support point-to-point com-
munications' between transputers, thereby enabling processes to be dis-
tributed over a network of transputers. It is thus possible to program systems
containing multiple interconnected transputers in which each transputer
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Figure 1.3 Processes connected together by channels
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implements a set of processes. It should also be noted that the transputer
can only send a message directly to another one to which it is physically
wired. The ability to specify a hardwired function as an occam process
provides the architectural framework for transputers w1th specialised
functions such as graphics. :

Whilst the transputer can be programmed in most hlgh-levcl languages,
benefit can be gained from the architecture if the system is programmed in
the concurrent language occam. Named after the philosopher William of
Occam, this has evolved as the native language of the transputer. A system
can be completely designed and programmed in occam from the system
configuration down to the low-level input—output and real-time interrupts.
occam allows concurrency to be explicitly defined within the program. An
important feature of both occam and the transputer is that a program
written in occam targeted for a system of several transputers will, with a few
program modifications, also execute on a one- transputer system, although
more slowly. How a program which consists of three processes, P, Q and R,
might run on a single transputer, and how the same three processes run on
three transputers, is illustrated in figure 1.4. - '

‘Briefly, some of the features of the programming langnage occam are the
following. The assignment statement, which is actually a primitive process, is
similar to that of conventional languages except that explicit parenthes-
isation is required. Input and output are facﬂltated through the use of
channels, for example

InputChannel ? char
would input a character char via the channel called InputChannel, and
OutputChannel ! char
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Figure 1.4 A program running either on a single transputer (a) or on a
network of three transputers (b)

would output a character char via the channel OutputChannel. Program flow
may be handled with IF and WHILE constructs. In conventional notations,
statements lexically following one another are executed in sequence. In
occam, statements are replaced by processes which operate in sequence or
concurrently, depending on whether they are preceded by the SEQ or the
PAR construct respectively. Concurrent processes are mutually synchronised
and communicate with each other via occam channels, and the external links
are implemented, programmatically, as channels. The occam ALT construct
provides a mechanism whereby a process can proceed upon receipt of the
first available input from any of a number of alternative concurrent processes.
Finally, timer interrupts and external event interrupts are consistently
handled as channels, as though they constitute input from other concurrent
_ processes.




2 The transputer

2.1 System design

The transputer is a high-performance microprocessor uniquely designed to
facilitate interprocess and interprocessor communication. The language-
directed architecture explicitly supports communicating sequential pro-
cesses through use of the programming language occam. The transputer has
special hardware facilities for process scheduling, interprocess channel com-
munication, interprocessor external serial link communications, and timer
and external interrupts. These facilities are all implemented in a consistent
manner, their management being expressed within the context of the occam
language. The transputer architecture defines a family of programmable
VLSI components, which includes the T212, T414 and a floating-point
processor T800. The general features of the transputer architecture are
shown in the block diagram figure 2.1. The architecture consists of the
following features:

e Fast Reduced Instruction Set Computer (RISC) processor

@ Fast on-chip static Random Access Memory (RAM)

e External memory controller N
e Hardware time-slicing features

® High-speed serial links (Inmos links) — four in the case of the T414.

Some of the comparative features of the T212, T414 and T800 are given in
table 2.1.

The T414, as a member of the family of transputers, will be used to
illustrate features of the transputer architecture; it provides users with 10
MIPs processing power with memory and communications capability, all on
a single CMOS chip.

2.2 System architecture

The T414 transputer integrates a 32-bit microprocessor and has 2 Kbytes of ‘

high-speed (50 ns) on-chip RAM and 4 Gbytes of linear address space with
a 25 Mbyte/s memory interface. The four links (Inmos links) on each T414
provide point-to-point communication with full duplex DMA transfer and
are capable of transfer rates up to 20 Mbits/s. A block diagram of the T414
is given in figure 2.2.
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Table 2.1 Comparative features of T212, T414 and T500

T212 ~ T414  T800

Internal register and bus width 16-bit 32-bit 32-bit

External memory interface width 8/16-bit  32-bit 32-bit

50 ns on-chip RAM 2kbyte  2kbyte 4 kbyte

Linearly addressable memory space 64kbyte 4 Gbyte 4 Gbyte

Minimum number of processor cycles for 2 3 3
external RAM access

Performance 10 MIPs 10MIPs 10 MIPs

Serial links (5, 10 or 20 Mbits/s) 4 4 4

Process scheduling in hardware with Yes Yes Yes
submicrosecond context switch

Internal timers for real-time processing Yes Yes Yes

External event interrupt with submicro- Yes Yes Yes
second typical interrupt latency

On-chip 64-bit floating point coprocessor ~ No No Yes
(ANSI IEEE 754-1985)

1.5 MFLOPs sustainable - - Yes

High-performance graphics support No No Yes

The internal memory, 2 Kbytes for the T414, provides a maximum data
rate of 80 Mbytes/s compared with about 25 Mbytes/s for external memory.
From the programmer’s point of view there is no visible difference between
the two. Any internal RAM is mapped onto the bottom-most part of the
address space, and if the address for a memory access lies within this range
then internal RAM is accessed, otherwise the external data/address bus is
activated. The provision of internal RAM has two advantages. Firstly, crit-
ical sections of code and data can be located there, resulting in a significant
increase in program execution speed. Secondly, it enables transputers to be
used without any external memory provided that the program and data are
not too large, thereby resulting in large savings in physical space.

The T414 can directly access a linear address space of 4 Gbytes. The
memory interface uses a 32-bit wide address/data bus and provides data at a
rate up to 25 Mbytes/s. The bus width does not have to match the 32 bits of
the processor: any multiple of 8 bits would be acceptable. The address space
of the T414 is signed and byte addressed. Addresses in the range
[#80000000 FOR #800] reference on-chip memory. Words are aligned
along 4-byte boundaries. The first 18 word locations of the address space are
used for system purposes. The next available location is then referred to as
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Reset —®  System Processor

Analyse ——» Services

Error -]

BootFromROM ——» <t P> < >

Clockin P ) g < Io

Vee ]

GND e mmm—
On-Chip < P Link tet—— Linkin
RAM - »  Interface | LinkOut

YV

A A

L Application Specific Interfaces

Figure 2.1 Block diagram of a transputer

MemStart. A suitable definition for MemStart for incorporation into an
occam program is: '

VAL MemStart IS #80000048:

The top of the address space is used for ROM-based code. If the transputer
is configured to bootstrap from ROM then the processor commences execu-
tion from address #7FFFFFFE. If the transputer is configured to use an
externally defined memory interface configuration then this is stored at
locations #7FFFFF6C to #7FFFFFFS.

o ~ - ——
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Fipure 2.2  Block diagram of the T414 transputer

A configurable memory controller provides all the timing and control
signals as well as supporting memory-mapped peripherals. This controller
may be configured to suit a range of memory systems. One of the 14 preset
configurations may be used, or an alternative may be supplied externally.
The T414 memory interface cycle has six states referred to as T-states. The
duration of each T-state is configured to suit the memory used, and has a
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duration between one and four times the value of Tm, where Tm is half the
processor cycle time. However, the duration of the T-state T4 may be
extended by wait states. The T-states are as follows:

T1 address setup time before address valid strobe
T2 address hold time after address valid strobe
T3 read cycle tristate/write cycle data setup

T4 extended for wait states

T5 read or write data

T6 end tristate/data hold

Communications to the transputer are provided by the standard Inmos links.
These links may be interfaced to the peripherals via an Inmos link adapter
whereby the peripheral may signal to the T414 via the EventReq pin with
which the T414 handshakes using EventAck. The T414 implements a hard-
ware channel to allow low to high transitions on the EventReq pin to be
communicated to a process as a sychronising message. An occam channel
may be associated with the EventReq pin by a channel association. The
conventional name and the value used for this channel are:

PLACE Event AT #80000020:

Event behaves like an ordinary channel, and a process may synchronise with
a low to high transition on the EventReq pin by using the occam construct

Event 7?7 signal

The process waits until the channel Event is ready, the channel being made
ready by the low to high transition on the EventReq pin. When the process is
able to proceed, and if it executes at high priority, then it will take priority
over any low-priority process which may be executing when the transition
occurs on the EventReq pin. i

High-level language execution is made secure with, for example, array
bound checking and arithmetic overflow detection. If the compiler is unable
to check that a given construct contains only valid expressions and pro-
cesses, then extra instructions are compiled in order to perform the neces-
sary check at runtime. If the result of this check indicates that an error has
occurred then the processor’s Error flag is set. This error can be handled
either internally by software or externally by sensing the Error pin. If the
processor has been halted as a result of an error, then the links continue
with any outstanding transfers, the memory continues to provide refresh
cycles and the transputer may be analysed. When a high-priority process
preempts a low-priority process the current value of the Error flag is
preserved and the Error flag is reset. When there are no high-priority
processes to rum, then the current state of the Error flag is lost and
the preserved state is restored as part of commencing to execute the pre-
empted low-priority process.
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Timing in occam is provided by use of a timer channel which can only
provide input. The value input from the timer is the current time, which is
represented as an integer value. The cycle of the clock depends on the
wordsize, on the amount by which the reading is incremented at each tick,
and on the frequency of the clock ticks. Each of these will depend on the
particular implementation on the hardware on which occam is running. In
the case of the transputer the ticks are in units of (input clock rate)/(5%64)
which normally works out at 64 ps per tick. With a 64 s tick and a 16-bit
integer, then the cycle time would be approximately 4.2 s; with a 32-bit
integer the corresponding cycle time would be approximately 76 hours. -

The processor has timers to support two levels of priority. The priority 1
(low-priority) processes are executed whenever there are no active priority 0
(high-priority) processes. High-priority processes are expected to execute
for short time intervals. If one or more such processes can proceed then one
is selected and allowed to execute until it has to wait for a communication, a
timer input, or until the process is completed. However, if no high-priority
process is able to proceed and one or more low-priority processes is able to
proceed, then one of the low-priority processes is selected. Low-priority
processes are time-sliced to provide an even distribution of prol:cssor time
between computationally intensive tasks. If there are n low-ptiority pro-
cesses, then the maximum latency, expressed as the time from when a low-
priority process becomes active to the time at which it starts processing, is
2n — 2 time-slice periods. Each time-glice period is 4096 cycles, which is
about 800 ps. In order to ensure that low-priority processes do proceed,
high-priority processes must not continuously occupy the processor for a
period equal to that of a time-slice. If a low-priority process is waiting for an
external channel to become ready, and there are no active high-priority
processes, then the interrupt latency, which is the time interval from when
the channel becomes ready until the process starts executing, is typically 12
processor cycles, though it may extend to a maximum of 58 cycles.

The system services comprise the clocks, power and initialisation used by
the whole of the transputer. The Reset and Analyse inputs enable the T414
to be initialised or halted in a way which preserves its state for subsequent
analysis. Whilst the T414 is running, both Reset and Analyse are held low.
The T414 is initialised by pulsing Reset high whilst holding Analyse low.
Operation ceases immediately and all current state information is lost. When
Reset goes low the transputer sets up the memory interface configuration as
appropriate. The processor and links start operating after the memory
interface configuration cycle is complete and sufficient refresh cycles have
been executed to initialise any dynamic RAM. The processor then boot-
straps. When initialising after power-on, a time is specified during which the
5V supply, V,,, must be within specification. Reset must be high, and the input
on ClockIn must be oscillating. Reset is taken low after the specified time
has elapsed. In order to analyse a system following a Reset, the first step is
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for the Analyse to be taken high, This causes the T414 to halt within three
time-slice periods, approximately 3 ps, plus the time for any priority process
to stop processing. Any outputting links continue to operate until they
complete the remainder of the current word. Input links continue to receive
data. Provided that there are no delays in sending acknowledgements, the
links in the system will therefore cease activity within a few microseconds.
Sufficient time must be allowed both for the processor to halt and for all link
traffic to be completed before Reset is asserted. The memory interface is not
affected by Analyse, or Reset, while Analyse is held high. If refresh cycles
are enabled it continues to refresh external dynamic RAM.

23 Inmos links

The transputer architecture provides point-to-point communications by way
of links called Inmos links. In the case of the T414 there are four such links.
Each link provides two occam channels, one in each direction. The com-
munication via any link may occur concurrently with communication on all
other links and with program execution. Synchronisation of processes at
each end of a link is automatic and requires no explicit programming. The
T414 links implement the standard intertransputer communications. The
conventional names and values for the channels are:

PLACE LinkQOOutput AT #80000000:
PLACE LinklOutput AT #80000004:
PLACE Link20utput AT #80000008:
PLACE Link30Output AT #8000000C:
PLACE Link0OInput AT #80000010:
PILACE LinklInput AT #80000014:
PLACE Link2Input AT #80000018:
PLACE Link3Tnput AT #8000001C:

The links are connected by w1rmg a LinkOut to a LinkIn, and this is
illustrated in figure 2.3.

LinkOut Lo Linkin
Linkin -t LinkOut
T414 Ta14

Figure 2.3 Transputer link connection
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Each link consists of a serial input and a serial output, both of which are
used to carry data and link control information. The link protocol is reminis-
cent of the serial ASCII protocol used with RS232, but differs in that an
acknowledgement is returned following each transmitted byte of .data,
thereby facilitating synchronised communication between concurrent pro-
cesses. A message is transmitted as a sequence of data packets. Each data
packet is transmitted as a one bit followed by a further one bit, followed by
eight data bits followed by a zero bit. After transmitting a data packet the
sender transputer waits until an acknowledge is received which signifies that
the receiving transputer is ready to receive another byte. The acknowledge
consists of a one bit followed by a zero bit. The link protocol format is shown
in figure 2.4.

Data

KK |Do|D1[Dz]D3{D4|DleG|D7[ o|

Acknowledge

[ o]

Figure 2.4 Link protocol format

Data and acknowledge packets are time-multiplexed down each signal line,
with a pair of lines providing two occam channels, one in each direction. The
receiving transputer can send an acknowledge as soon as the data packet has
been identified, so transmission can be continuous, provided there is suffi-
cient buffer space for another data packet and the inputting process is ready
to receive the previous data packet. This protocol synchronises the com-
munication of each byte of data, providing reliable communications even
between transputers of inherently different speeds. The communications
protocol is independent of word length, so transputers using different word
lengths can communicate directly. ,

The link connections allow some selection of the link speeds. When the
Link0Special and Link123Special inputs are held low the communications
rate on all four links is twice the input clock frequency. Since the standard
ClockIn frequency is 5 MHz, this means that the standard communications
rate is 10 Mbits/s, which is more than 500 times faster than RS232. If
Link123Special is held high then Link1, Link2 and Link3 all operate at the
ClockiIn frequency.
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The provision of links allows intertransputer communications, and hence
the connection of transputers into arrays. A wide variety of configurations
are possible, partly dependent on the number of links used. Figure 2.5 shows
a subset of a number of alternatives; the choice appropriate to any given
case is influenced by the nature of the requirements. For example, all four
links may be unsed to interconnect a pair of transputers, and these can then
act as a node in a three-dimensional lattice pattern.

l One- and two-dimensional networks

i I

1 T
N

IThree—dimensional lattice I

TREY N

Av Ay .l

v A
v 1

a

Figure 2.5 Examples of intertransputer connections
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A process may be ready to communicate on any one of a number of
channels. Communication takes place when another process is ready to
communicate on one of the channels. Since a process may have internal
concurrency, it may have many input channels and output channels per-
forming communications at the same time.

Since the transputer implements the occam concepts of concurrency and
communication, occam can be used to program both single transputers and
a network of transputers. In the case of a single transputer, it shares its time
between concurrent processes and channel communication. In this case, the
communication is via memory-to-memory data transfer. For a network of
transputers, each transputer executes the process which has been allocated
to it, The communication between occam processes on different transputers
is via occam links. The same occam process can thus be implemented on
either a single transputer or on a network of transputers. The implementa-
tion using a network will achieve a better performance with regard to speed
than the equivalent process on a single transputer. However, the cost and
other overheads of such a network may be significant. The configuration

- chosen for any particular case is therefore dependent on considerations such
as performance and cost.

3.2 Notation

In this book the notation used in the description of occam follows that
adopted in the language definition by David May as described in Inmos
(1984).

occam programs are built up from processes. The simplest process in an
occam program is an action. An action can be composed of any of the
following:

® assignment
e input
® oufput

where an assignment computes the value of an expression and sets a variable
to this value which can be expressed as

assignment = variable := expression

This assignment is made provided the type of the variable is that of the
expression, otherwise the assignment is invalid. Here the symbol := indic-
ates the assignment. For example,

b:=e

sets the value of the variable b to the value of the expression e and then
terminates. Thus '



occam notation 19

vy =0

sets the value of y to zero.
A multiple assignment is also possible:

a, b ci=p+3, g-2, x

Here, for example, the assignment assigns the values of p + 3, g—2, and rto
the variables a, b, c respectively. In such multiple assignments, the values of
the expressions to be assigned, ie. p + 3, g — 2, and r in this case, are
calculated and the actual assignments are then made in parallel. An inter-
esting example is

a, b i=b, a

where this has the effect of swapping the values of the variables a and b.
The meaning of

action = assignment | input | output

reflects the fact that a process may be either an assignment, an input or an
output.

The written structure of an occam program is specified by the syntax.
Each program statement occupies a single line, except that long statements
can be broken over more than one line, as discussed shortly. Unlike some
programming languages where the level of indentation is not obligatory, in
occam the indentation of the lines of the program forms an intrinsic part of
the syntax of the language. The syntax for the language construct sequence,
SEQ, is discussed in detail in the next section, but it takes the form

sequence = SEQ
{process}

This syntax denotes a sequence followed by one or more processes, each
on a separate line and all indented by the same amount — two spaces
beyond the SEQ. The notation {process} signifies the number of times that
the syntactic object will occur; in this case the object is a process. The
process will occur zero or more times, An extension to this notation would be

{0, expression} meaning a list of zero or more
expressions, separated by commas

{1, expression} meaning a list of one or more
expressions, separated by commas.

Long statements which require additional lines may have to be broken.
When a statement is broken, the continuation of the statement on the
following line must be indented at least as much as the first line of the
statement. To break such a long statement, the break must be made immedi-
ately after any of the following:
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@ an assignment =

e acomma ,

e akeyword IS, FROM or FOR
® an operator +, - *, /, etc.

@ asemicolon ;

A text string may also be broken to continue on additional lines, but in this
case the first line of the string ends with a ‘** and the continuation on the
following lines also starts with “*’.

A comment is preceded by the character pair ‘- -, and extends to the end
of the line. Comments may not be indented less than the following statement.

SEQ — A sequence
-- An illustration of the use of comments
-~ A comment may not be indented less
- than the following statement

SEQ -- Another sequence

However in the following, the use of comments is invalid:
SEQ —— A sequence .
—— An invalid comment, insufficient indentation
SEQ -- Another sequence

Input and output are used for communicating between processes. Input is
indicated by the symbol ? . For example,

keyboard ? char

inputs the value from the channel keyboard and assigns it to the variable
char and then the process terminates.
Output is indicated by the symbol ! . For example,

screen ! char

outputs the value of the variable char to the channel screen and then
terminates.
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Occam requires that every object that is used in the program must be
declared before it can be used; this tells occam what sort of object it is
dealing with. So far we have introduced the ideas of channels, using names
such as keyboard and screen, and the use of variables, using names such as
char without detailed specification of the relevant types.

First of all, objects in occam can be as long as the user wishes, but they must
start with a letter of the alphabet. After the first letter, the rest of the name
may be either a letter of the alphabet, or numbers or the dot character.
Occam treats upper-case and lower-case characters as different, so that
Counter and counter would represent different variables. Occam has a
number of reserved words which cannot be used for variables, and these are
written in upper case. The reserved words are given in table 4.1.

Table 4.1 Reserved words in occam

AFTER IS PROTOCOL
ALT INT REAL32
AND INT16 REAL64
ANY INT32 REM

AT INT64 RESULT
BITAND MINUS RETYPES
BITNOT MOSTNEG  ROUND
BITOR MOSTPOS  SEQ
BOOL NOT SIZE
BYTE OR SKIP
CASE PAR STOP
CHAN OF PLACE TIMER
ELSE PLACED TIMES
FALSE PLUS TRUE
FOR PORT OF TRUNC
FROM PRI VAL
FUNCTION  PROC VALOF

IF PROCESSOR WHILE

21
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4.1 Primitive types

In occam every variable, expression and value has a type, which may be a
primitive, array or record type. The type defines the length and interpreta-
tions of the type. The general representation of primitive types is given by:

type = primitive.type | array.type

primitive.type = CHAN OF protocol
| TIMER
| BOOL
| BYTE
| INT
| INT16
| INT32
| INT64
| REAL32
| REAL64

array.type [expression]type

So the following are the primitive types which are present in all implementa-
tions of occam:

e CHAN OF type Each communication channel enables values of the
specified type to be communicated between two concurrent processes.
e TIMER Each timer provides a clock which can be used by any
number of concurrent processes.
e INT INT is the type of signed integer represented in twos comple-
ment form, supporting the following ranges of valnes m:
INT16 -32768 < = n < 32768
INT32 2147483648 < = n < 2147483648
INT64 -2%*%63 < = n < 2*%63
e REAL32 Floating-point numbers using a sign bit, 5, an 8-bit ex-
ponent, ¢, and 23-bit mantissa, £ The value of the number is positive if s
= 0, negative if s = 1; its magnitude is:

(2**(e— 127))*L.f if0 < e < 255
(2**-126)*0.f ife=0andf<>0
0 ife=0andf=0

® REAL64 Floating-point numbers using a sign bit, 5, an 11-bit ex-
ponent, ¢, and 52-bit mantissa, £. The value of the number is positive if s
= 0, negative if s = 1; its magnitude is:

(2**(e—1023))*1.f if0 < e < 2047
(2**~1022)*0.f fe=0andf<>0
0 ffe=0andf=0

e BOOL The values of type BOOL are TRUE and FALSE.
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® BYTE The values of type BYTE are non-negative numbers less than
256.

A variable, expression or value may be declared to be one of the above types
by use of a declaratlon of the form

declaration = type name :

Note the use of : to signify the end of the declaration.
' Variables of integer type would be specified as, for example,

INT x @
P

declares x as an integer to be used in the process P.
As described above, data types may be specified in various forms, but by way
of illustration, variables of type integer can be given as:

INT signal, counter :

Several variables, such as signal and counter in the above, can be specified at
once provided each is separated by a comma. The type declaration is
terminated by a colon as shown above. This colon joins the type specification
to the process which follows it, and they are indented to the same level as the
process that follows. The process which follows the specification is the one
thronghout which the specification is valid, and is usually referred to as the
scope of the specification. This means that the same name may be used for
different objects with different scopes. However, if there is a need for a
variable to keep its value from one process to another then it is necessary to
be sure that the variable is spemﬁed within the outer scope in a process
which itself contains the inner process in which the variable is to be accessed.

As an illustration of a process which uses the type declaration INT, the
following process is a non-terminating one which filters negative numbers
from a sequence.

INT val;
WHILE TRUE
SEQ . .
c.1l ? val
IR
val >= 0
c.2 ! val
val < 0
SKIP

Here values, called val, are read in as integers on the input channel c.1. If
the value is zero or positive then the value is output on channel c.2; other-
wise, if the value is negative, no corresponding value is output.
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Communication between the component processes of a PAR construct
must only be achieved using channels. occam does not allow values to be
passed between processes using the option of shared variables. The
reasoning behind this restriction is evident when we remember that for the
PAR construct the processes which are running in parallel are executing in
their own time, being synchronised only at times when they are communic-
ating with each other by means of channels between them. It would be quite
impossible to allow use of shared variables within such a framework. For
example, if it were possible in occam to write:

INT v.1:
PAR
p.l
p.2

how would access to v.1 be controlled? Bear in mind that the number of
physical processors neceded to run a set of parallel processes is not defined
in occam. In the example above, the processes p.l and p.2 could be ex-
ecuting on the processor, or they could be executing on entirely separate
processors — each processor having its own distinct memory area. One of
the important aspects of occam is the facility to write parallel programs
which behave correctly regardless of the mapping from processes to pro-
cessors. If occam permitted us to write programs like the example above it
would be extremely difficult to guarantee correctness.

Specification of a variable in occam does not initialise the value of that
type to any particular value. The value of the variable can have any value
until it is assigned or input within the process within which it has been
specified. Once outside the process associated with its specification, the
variable does not exist, and its value from within the process has no meaning
once that process has terminated. For example, if we write

INT v.1, v.2:
SEQ
process

the values of v.1 and v.2 are undefined until they are assigned to in some way
— using either an assignment process or an input process. If v.1 or v.2 are
used before they have been assigned to, the results will be unpredlctable
(and almost certainly wrong). So,

INT v.1, v.2, v.3: -- values of v.l and v.2 undefined
SEQ

v.3 = v.l + v.2 —— wrong'!

v.l =0

v.2 =0 == v.1l and v.2 now defined
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When using arithmetic operators in occam with real operands the results of
those operations are rounded to produce a value which is of the same type
as their operands. In explicit type conversions rounding also occurs as well
as in converting real literals. Truncation takes place only in explicit type
conversions. In the case of rounding it is valid to round a real value to a
value of type T provided that the real value differs from some other value of
type T by at most one half in the least significant bit position of this new
value. The result is the value of type T nearest to the original real value; if,
however, two values of type T are equally near then the one in which the
least significant bit is zero is chosen. In the case of truncation, it is also valid
to truncate a real value to a value of type T provided that this real value
differs from some other real value of type T by less than one in the least
significant bit position. The result is the value of type T nearest to and not
larger in magnitude than the original real value.

4.1.1 Channel types

Channels are all of type CHAN OF protocol. It is necessary to specify the
data type and structure with which they are associated, and this is referred
to as the protocol of the channel. A simple example of a channel which can
carry integer values would be specified as

CHAN OF INT count :

Here the specification of INT defines the type of data that is to be com-
municated through the channel specified by count. If attempts to com-
municate data other than that of type INT via this channel are made an error
will result. The specification thus gives the type for channel count as CHAN
OF INT. For example,

CHAN OF INT c.1, c.2:
CHAN OF BOOL c.3:

INT v.1l, v.2:

BOOL b.1:

SEQ _
c.l1?2v.l ~-— input value from c.l into v.1
c.2 ! v.l -- output value from v.l to c.l
c.3?b.1 v -— input value from c¢.3 into b.l
c.3?v.2 —-- incorrect!

An example of use of channels is given below, where the two channels c.1
and c.2 which act as input and output channels respectively are defined as
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being channels of type integer. In general they may be specified by the
following:

CHAN OF INT c.l,c.2:

where this definition may be in the outer body of the complete occam
program. The use of these channels is then illustrated by the following
process which sums up a sequence of numbers, and outputs their mean when
it receives a negative number.

INT val, sum, count:
BOOL running:

SEQ
running := TRUE
count := 0
sum := 0
WHILE running
SEQ
c.1l ? val
Ir
val > 0 —— accurulate the sum
SEQ
sum := sum + val
count := count + 1
val = -— ignore this value
SKIP
val < 0 -~ output the mean and terminate
SEQ )
c.2 ! (sum/count)

running := FALSE

The use of the type BOOL here is described in the next section. In this
process the sum is accumulated from inputs on channel c.1 only for positive
values of input. The values of zero are not included, although these could be
regarded as contributing to the average value in which case a simple modi-
fication to the program can be made to achieve this. The mean value is
output on channel c.2 when a negative value is input.

4.1.2 Boolean types

Values of the data type BOOL are either TRUE or FALSE. The values
themselves are achieved as a result of some arithmetic operation and the
results of this operation are then tested by one of a number of comparison
operations. The following comparison tests, which can only be made
between values of the same data types, are available within occam:
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SEQ
c.2 ! {sum/count)
running := FALSE
TRUE - accunmulate the sum
SEQ
sum := sum + val
countt := count + 1

In the earlier version input values of zero were ignored; in this case the
termination condition is put first in the body of the IF, and all other cases
are handled in the alternative branch. A similar approach was one of the
options that could have been used in the earlier example to overcome the
input of values of zero.

4.1.4 Timer type

occam has a type TIMER allowing the creation of timers which can be used
as clocks by processes. Timers are a primitive type, just like channels and
data types, and the syntax is specified by

primitive.type = TIMER

An operator AFTER can be used to compare times.
A timer is declared in a manner similar to channels and variables. For
example in the case

TIMER clockA :

a timer is declared and identified by the name clockA. A value which is
input from a timer provides a value of type INT representing time. The value
is derived from a clock which changes by an increment at regular intervals.
The rate at which the timer is incremented is dependent on the implementa-
tion. The value of the clock is cyclic; once it reaches a maximum positive
integer value the next increment makes it the most ncgatlvc value and the
cycle is repeated.

Timers are accessed by using special input forms known as timer inputs,
which are similar to channel inputs. The syntax for such timer inputs is given
by

input = timer input | delayed input

timer input timer ? variable
delayed input = timer ? AFTER expression

A timer input receives a value from the timer named on the left of the input
symbol, ?, and assigns that value to the variable named on the right of the
symbol. A delayed input waits until the value of the timer named to the left

£
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of the input symbol, ?, is later than the value of the expression on the right of
the keyword AFTER. :
In the following,

clockA ? time

inputs a value from the timer clockA and assigns it to the variable time.
Inputs from the same timer may appear in any number of components in
parallel, unlike inputs from channels.

In the following, T

clocka ? AFTER time

the input waits until the value of the clockA is later than the value of time.
An example of use to provide timer inputs at two defined points which are a
fixed delay apart would be

SEQ
clockd ? time
clockA ? AFIER time PLUS delay

Here a value representing the present time is input to the variable time. A
further input after the value input from clockA is later than the value of time
PLUS delay.

As an example of the use of a timer, this non-terminating process waits for
a given time interval and the sends a ‘time pulse’ over a number of channels,
represented by chan.1, ... ,chan.n. :

VAL INT delay IS t:

TIMER clock.l:
INT time:
INT count:
SEQ
count := 0
clock.l ? time
WHILE TRUE
SEQ
time := time PLUS delay —- avoid arithmetic overflow
clock.l ? AFTER time -- wait ...
count := count + 1
PAR -— send a number of messages
chan.1l ! count -- simultaneously ‘

chan.n ! count
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There are two points to note about this program. Firstly, arithmetic on the
time value is done using the PLUS operator instead of the usual ‘4’
operator; the PLUS operator avoids arithmetic overflow, allowing the
programmer to ignore the actual integer value of the time,

The second point to note is that the program avoids ‘cumulative error’. If
the program had taken the current value of the clock each time around the
loop and then added the delay to it, then the clock pulses emerging from the
process would have been separated by the delay plus the time required to
send all of the messages. If the delay was small, this could introduce an
appreciable error,

4.1.5 Characters

Occam does not have any type to represent alphabetic letters or words
specifically. The representation of these will be discussed later, but for the
present the comment can be made that characters are represented by
numbers of type BYTE, and strings are represented as arrays of numbers of
type BYTE.

4.2 Array types

In occam an array is a group of objects which are all of the same type. They
are combined together into a single object with a name. Each of the objects
in the array can be individually specified and referred to by specifying the
appropriate subscript number to its position within the array. Each of these
array elements is often referred to as a component of an array. The
declaration of the array and its elements is similar in occam to other
languages, though in this case the number of components in the array is
contained in brackets which preceed the type. For example,

[50]INT total: -- an array of fifty integers called total

The declaration of the array thus specifies both its size, or number of
components, and its Lype.

In occam numbering starts with zero, so that the first component is
component 0. Each component can be referred to, for example

total[6] —— component 7

so that in the above array definition the components range from total[0] to
total[49]. Attempts to use a subscript outside the range specified will cause
an error; for example, totalf50] would generate an error.

The components of array variables behave as ordinary variables and can
be used in all places that variables can be used, in particular they can be
assigned, input to, or output from, so that
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chan3 ! total[4] --output component 5 onto channel chan3

Whole arrays may also be assigned, input to, or output from, through
channels provided the receiving variable is of the same type and the protocol
of the channel being used is able to transmit that particular type.

Array types are constructed from o components of type T. An array type
is a channel, timer or data type depending on the type of its components.
Two arrays have the same type if they have the same number of components
and the types of their components are the same. In the array type [e]T, the
value of e defines the number of components in an array of the array type,
and T defines the type of the components. Every array must have at least
one component. A component of an array may be selected by subscription,
so that :

v[ e ]

selects the component e of v. A set of components of an array may also be
selected by subscription. For example,

v[ FROM e FOR c ]

selects the components v[e], v[e + 1], ... v[e + c -1]. Here ¢ specifies the
number of components selected and not the maximum component value.

Variable arrays, record types and variant types can only be used in input
and output. For variable arrays the representation is

array type = (type :: type).
For example, if I is an integer or byte type and A is an array type, then
(T :: BA)

is the type of a record (m,a) in which n is a count of the number of
components of a.

The following process is used as an illustration of the use of an array, in
this case to store a sequence of values:

[80]INT values:

INT val, count:

BOOL running:

VAL INT dump.array IS -1:
VAL INT terminate IS -2:

SEQ
running := TRUE
count := 0
WHILE running

SEQ
cl ? val
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IF
val = temninate
running := FALSE
val = durp.array

INT ix:
SEQ
ix =0
WHILE ix < coun
SEQ i
c2 ! values[ix]
ix ;= dx + 1
count := 0
TRUE
SEQ
values [count] := val
count := count + 1

In this process values are accumulated in the array values, which are of type
integer, so that the values which are used in the array, namely count and ix,
both have to be of type integer. There is a limit of 80 for the size of the array
set by the definition. Any attempt to read in data in excess of this will cause
an error. In this illustration there are two termination conditions:

e the current contents of the array are output
@ the execution is terminated

In the example the definition of the variable ix which is local to the output
process is declared in the output process itself rather than in the body of the
complete process.

occam allows the programmer to assign entire arrays, and sections of
arrays, in a single assignment statement. For example, in order to assign the
entire array a.2 to the array a.1, the programmer could write

[20]INT a.1, a.2:
SEQ
a.l :=a.2

to assign the entire contents of a.2 to a.1; it is up to the occam translator to
perform this as efficiently as possible.

It is also possible to use a slice of an array. For example, if we consider
again the arrays a.l and a2 above, and we wish to copy the last five
elements of array a.2 to the first five entries in a.1, then we can write

[20]INT a.l, a.2:
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SEQ
c.l := (1.0, 2.0, 3.0) -
(x, y, z) :=c.l
y =y + 1.0(REAL32)
z i= z * 2.0 (REAL32)
c.2 = (%, vy, 2)

occam also allows records to be nested, for example

RECORD Coord IS (REAL32, REAL32, REAL3Z):
RECORD Ttem IS (BOOL, INT):
RECORD Object IS (Item, Coord):

Using the above illustration of records, it is possible to construct arrays of
records, for example

[20] Coord List.Of.Coords:

would define an array List.Of.Coords where each element of the array is a
record with three REAL32s.
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5.1 Language constructs

So far we have considered processes as being one of only three primitive
kinds: assignment, input and output processes. A number of processes may
be combined to form a construct. A construct is itself a process and so can
be used to form part of a further construct. Each component process of a
construct is written two spaces further from the left-hand margin, so as to
indicate that it is part of the conmstruct, and acts as a ‘guard’ for that
particular construct.
In our notation a process can be written as

process = SKIP | STOP | action | construction
SKIP starts a process, performs no action
and terminates
STOP starts a process but never proceeds

and never terminates.

SKIP can be considered as a process that does nothing, so that it can be
used to stand in for parts of a program which may not be written but which
for the time being can be allowed to do nothing. Equally it is often used to
satisfy conditions in some of the constructs to be described.

STOP can be considered as representing a process which does not work,
and as such could be used in program development to replace a process
which has yet to be written. It is important to realise that a stopped process
cannot proceed and in particular never terminates. For example, a process
may become stopped waiting for input which will never come and hence the
process becomes deadlocked. Correct termination of concurrent processes
is most important.

The difference between the SKIP and STOP processes can be illustrated
in the following sequence:

SEQ
keyboard ? char

35
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SKIP
screen ! char

SEQ
keyboard ? char
STOP
screen ! char

In the first case the sequence is such that a variable called char is input via
the channel keyboard. When this process terminates the process SKIP,
which performs no action, is then executed. This is followed by outputting
the variable char through the channel screen.

In the second case the sequence again starts by inputting the variable
called char via the channel keyboard. When this process terminates the
process STOP then executes which does not terminate so that the sequence
cannot continue and the statement

screen ! char

is never executed. v

Several processes may be combined into a larger process by the same
specification as to how the processes are to be performed. For example, the
specification could be that the processes may need to be performed one
after the other, ie. in sequence, or all at the same time, i.e. in parallel.
Construction may be represented in the form:

construction = sequence | parallel | conditional | loop |
alternation

The classes of constructs are then given by:

® SEQ sequence
@ PAR parallel

e IF conditional
e WHILE loop

o ALT alternation

and these are now considered in more detail.

5.1.1 SEQ sequence
The sequential construct can be represented by

sequence = SEQ
{process}

The SEQ construct is followed by one or more processes which are indented
by two spaces. For example,
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SEQ
Pl
P2
P3

means that the processes P1, P2, P3, ... are executed one after the other.
Each process starts only when the one above it has terminated, so that in this
case the order is process P1 followed by process P2, and so on. The whole
sequence terminates when the last process has itself terminated. A sequence
with no component processes behaves like SKIP. For example

SEQ
c.l ?x
x =x+1
c.2 ! x

mputs a value on channel c.1 to the variable x. Then x is incremented by 1,
and finally the result is output on channel c.2.

5.1.2 PAR parallel
A parallel construct can be represented by

parallel =
{process}

The PAR construct is followed by zero or more processes which are
indented by two spaces. For example,

PAR
Pl
P2
R3

means that the processes P1, P2, P3, ... start simultaneously, and proceed
together, and therefore the processes must be independent of each other.
The construct terminates only after all the component processes have termin-
ated, but there is no fixed order in which the individual processes will
terminate. A parallel process is ready to communicate on a channel if any of
its components is ready. A parallel construct with no component processes
behaves like SKIP. ' . '
There are several important constraints on the parallel construct relating
to the independence of its constituent processes. No variable changed by
assignment or input in any component processes of a paralle]l construct may
be used in any other component of the same construct. Within the same
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construct no channel may be used for input in more than one component
process and no channel may be used for output in more than one component
process. A parallel construct is invalid unless these non-interference
conditions are satisfied. The sequence

PAR
c.l ?2x
c.2 'y

allows the communications of input on channel c.1 of the variable x, and the
output on the channel c¢.2 of the variable y, to take place together ie.
concurrently, This parallelism is highly optimised in order to incur minimal
process scheduling.

5.1.3 PLACED PAR

Once a program has been developed and verified then the component
processes may each be executed on a individual processor. A variant of the
PAR construct called the PLACED PAR is used to assign a process for
execution to a specified processor. The syntax for this construct is

parallel = PLACED PAR

{placement}
| PLACED PAR replicator
placement
placement = PROCESSOR expression
process
For example,
PLACED PAR
PROCESSCR 1
Pl
PROCESSOR 2
P2

means that the processes P1 and P2 are placed on the individual processors
numbered 1 and 2 respectively.

5.1.4 IF conditional
A conditional construct can be represented as

conditional = IF
{choice}
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choice = guarded.choice | conditional

guarded.choice = boolean
process
boolean = expression

A choice is either a guarded choice or a further conditional. A guarded
choice is itself a boolean followed by a process which is indented by two
spaces. For example,

conditionl
Pl

condition2
P2

is such that, if P1 and P2 are processes and conditionl and condition2
represent conditions whose values may be either TRUE or FALSE, then P1
is executed if conditionl is TRUE, otherwise P2 is executed if condition? is
TRUE, and so on for any other conditions. Only one of the processes is
executed and then the construct terminates. Notice the indentation of P1
and P2 as described before. A conditional behaves like the first of the
choices that can proceed, or like STOP if none of them can proceed. For
example,

IF

x =
yi=y+1
x <> 0
SKIP

increments the value of the variable y if and only if x = 0. There is a need to
provide an option if x <> 0 and this is achieved by use of the SKIP
command. ‘ '

A conditional construct with no component choices behaves like STOP. If
in the above example the coding is altered to

IF
x=0
y=y+1 o
then in this case, where the IF statement only has one component, then for
the case x <> 0 the conditional behaves as the primitive STOP. It is often
convenient to use a ‘catch all’ situation, so that in the following the boolean
constant TRUE is always true and used to provide an ‘otherwise’ condition
where neither x < 0 nor x > 0 is satisfied.
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IF
x <0
z =y -1
x>0
z =y +1
TRUE
z =y
5.1.5 WHILE loop
The loop construct can be represented by
loop = WHILE boolean
process

The WHILE command is followed, to its right, by a boolean expression, and
this is followed on the next line by a process which is indented by two spaces.
For example,

WHILE
Pl

means that the process P1 is continuously executed while the value of the
condition is TRUE and only terminates when the condition becomes FALSE.
This means that

WHIIE (x -~ 5) > 0
X =x -5

leaves x with the value of (x MOD 5) if x is positive.
The following process, which was considered in Chapter 4 for the case of
arrays, also serves to illustrate the use of the WHILE construct.

[80)1INT values:

INT val, count:

BOOL running:

VAL INT dump.array IS -1:
VAL INT terminate IS -2:

SEQ
running := TRUE
count := 0
WHILE running
SEQ
cl ? val
I

val = terminate
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running := FALSE
val = dump.array
INT ix:
SEQ
ix = 0
WHILE ix < count
. SEQ
c2 ! values[ix]
ix = ix +1
count := 0
TRUE
SEQ
values[count] := val
count := count + 1

5.1.6 ALT alternation
An alternative construct may be represented by

alternation = ALT
{alternative}

alternative guarded.alternative | alternation

guarded.alternative = guard
. process

guard

]
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input |boolean & input|boolean & SKIP

The ALT construct is followed by one or more alternative processes which
are indented by two spaces. An alternative may be either a guarded
alternative or another alternation. A guarded alternative is an input, or a
boolean expression to the left of the ampersand, &, with an input or SKIP
on the right, SKIP can take the place of an input in a guard which includes a

boolean expression. For example,

ALT
inputl
Pl
input?2
P2
input3
P3
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where P1, P2 and P3 are processes and inputl, input2, input3, ... usually
refer to input processes, but can be output processes, is such that the
process waits until one of the input processes inputl, input2, input3, ..., is
ready. If inputl becomes ready first then process P1 will be executed.
Similarly if input2 becomes ready first, then process P2 will be executed, and
so on. Only one of the processes will be executed and the process terminates
when that process which has been chosen is itself terminated. A guard
behaves as STOP if its boolean is initially FALSE, and like the input or SKIP
otherwise. An alternation with no component alternatives behaves as a
STOP. For example,

ALT
count ? signal
counter := counter + 1
total ? signal

SEQ
out ! counter
counter := 0

executes one or other of the following:

e inputs a signal from channel count, then increments the value of the
variable counter

e inputs a signal on the channel total, then outputs on the channel out
the value of the variable counter, and finally resets the value of the
counter to zero.

Guards in ALT statements have a number of uses, one of which might be
to ignore certain channels. For instance,

CHAN OF INT c.1, c¢.2, c.3:
INT input:
BOOL running, flag:
SEQ
running, flag := TRUE, TRUE
WHILE running
SEQ
ALT
flag & c.1 ? input
c.3 ! input
flag & c.2 ? input
c.3 ! input
NOT flag & c.1 ? input
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In the following example,

CASE nurber
’1’, I3l’ ’5,, I7I’ Igl
odd := TRUE

the CASE construct is such that that if number has the character values of 1,
3, 5,7, 9 then the variable odd is returned as TRUE, otherwise the selection
behaves as the primitive process STOP. As discussed elsewhere, it is often
desirable to have an option which allows all possible selections to be
covered. The above program could be modified:

CASE nurber
rir, 137, 151’ 171’ rgr {
odd := TRUE ‘
ELSE
odd := FALSE

where the ELSE will only be effective when no other selection is satisfied.

5.2 Replicators

So far we have discussed the constructs SEQ, PAR, IF, WHILE and ALT. In
order to repeat a process a number of times, a construct exists which can be
used to provide replication of a process.

In general, if X represents one of constructs SEQ, PAR, IF, or ALT and
Z(n) is a corresponding process and A and B are expressions of type INT
with values a and b then the form of the replicator construct can be given by

Xn=2AFOR B
Z(n)

The.meaningb of the replicator can now be expressed as:

SEQ n = A FOR 0 => SKIP
Z (n)
PAR n = A FOR 0 => SKIP
Z (n)
IF n=AFOR 0 => STOP
Z (n) ‘:
ALT n= A FOR 0 = STOP
Z(n)

IfB > 0 then
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X n=AFOR B => X
Z{a)
Z{a + 1)
2(a +b - 1)
If B < Othen
Xn=2AFORB is invalid
Z(n)
5.2.1 Replicated SEQ

The syntax of the replicated SEQ extends the syntax of the SEQ construct
which was discussed in an earlier section. The syntax is represented by

sequence = SEQ replicator

process

replicator = name = base FOR count
base = expression

count = expression

In this construct the SEQ and the replicator, which is written to- the right
of the SEQ, are followed by a process which is indented by two spaces. The
replicator specifies the name for the index, which does not need to be
declared elsewhere. The value of the index for the first replication is the
value of the base expression, and the number of times that the process is
replicated is the value of the count expression at the start of the sequence.
The index, which has a value of type INT, can be used in the expression but
it cannot be assigned to by an input or an assignment. The base and count
expressions are also of type INT. A value for count such that count < 0 is
invalid, and the case where count = 0 means that the replicated SEQ
sequence behaves like the primitive process SKIP.

The replicated SEQ construct is equivalent to a counted loop. For
example,

SEQ i = (0 FOR n
Pl

causes the process P1 to be repeated n times. If input is specified as a -
channel, then 3

INT y:
SEQ i = 0 FOR 10
input ? v

means ‘produce ten replicas of the input process and execute them in
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sequence’. An alternative piece of code to achieve the same result without
* use of the replication construct might be

INT y,i:
SEQ
i:=0
WHIIE i < 10
SEQ
input ? y
1:=1+1
It is clear that use of the replicator is more concise and does not need the
declaration of a separate loop counter variable, i in this case, and its
subsequent incrementing each time the loop is executed.

Since the use of replicated SEQ constitutes an array of processes, the
construct can only terminate once all the processes in the array have
finished. This means that partial execution of the replicated SEQ is invalid,
as is partial execution of any of the other replicated constructs.

We can use the replicated SEQ to rewrite the example used in section 4.2:

[80]INT values:
INT val, count:
BOOL running:

VAL INT dump.array IS -1:
VAL INT terminate IS -2:

SEQ
running := TRUE
count := 0 )
WHILE running
SEQ
c.l ? val
IF

val = terminate
running := FALSE
val = dump.array
SEQ
SEQ ix = 0 FOR count - 1
c.2 ! values[ix]
ix = dix + 1
count := 0
TRUE
SEQ
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values [count] := val
count := count + 1

As before, the channels c.1 and c.2 are declared elsewhere in the program.
The explicit loop that was used previously has now been replaced by the
replicated SEQ. Not only does this shorten the program, but it also makes
the meaning slightly more clear.

5.2.2 Replicated PAR N

The syntax for the replicated PAR is similar to that just described for the
replicated SEQ: B

parallel = PAR replicator
process

replicator = name = base FOR count

base = @xpression ' '

count = expression

The PAR and the replicator, which is written to the right of the PAR, is
followed by a process which is indented by two spaces. The replicator
specifies the name for the index, which does not need to be declared
elsewhere. The value of the index for the first replication is the value of the
base expression, and the number of times that the process is replicated is the
value of the count expression at the start of the sequence. The index, which
has a value of type INT, can be used in the expression but it cannot be
assigned to by an input or an assignment. The base and count expressions
are also of type INT, and must be constant values. A value for count such
that count < O is invalid, and the case where count = 0 means that the
replicated PAR sequence behaves like the primitive process SKIP.

The replicated PAR construct produces an array of structurally similar
parallel processes. It is used in a wide range of applications, and it provides
an easy implementation of such concepts as queues, buffers and pipelines. In
general for the replicated PAR construct we could have,

PAR i = 0 FOR n
Pi

which constructs an array of n similar processes Py, Py, .. Py

As an illustration of the construct, we consider implementation of a
simple queue. Queues are often used as a way of buffering between pro-
cesses, when they operate in such a way that the rate of supply and demand
between processes is not equal, and data needs to be temporarily stored
before processing, This effect can be easily simulated as data passing down a
chain of buckets, or slots in the program. The slots form an array of parallel
processors which pass data between the slots. A typical program might be
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[20] CHAN OF INT slot:
PAR i := 0 FOR 19
WHILE TRUE
"INT y. -
SEQ
slot[i] ? v
slot{i + 1] !y

Here 19 parallcl processes are set up which continually transfer data be-
tween slots in the queue. The queue is represented by an array.of 20
channels. Note that the synchronisation between successive slots is achieved
within the SEQ construct. However, this can only be regarded as a part of a
program since by itself it does not provide a satisfactory initial source of data
into slot[0] or indeed an effective output for data from slot[20]. This prov1—
sion would need to be provided elsewhere within a complete program, since
this fragment of code simply illustrates the use of the parallel construct for
an array of processes.
This example could make use of channel constants as follows:

[20] CHAN OF INT slot:
PAR i := (0 FOR (SIZE slot - 1)

VAL input IS slot(i]:
VAL output IS slot{i + 1]:

WHILE TRUE
INT y:
SEQ
input ? vy
output ! vy

Here we define two channel constants, input and output, to correspond to
two elements in the slot array: This technique of defining a constant to be an
array element has two advantages. Firstly, it can make large code segments
more readable by giving names to global items; this is particularly true for
pipelines of processes, where the processes are working on sections of a
large volume of data. Secondly, the occam translator can calculate the offset
into the array, which in this case is slot, only once; as a result, the constant
names are more efficient.

In order to illustrate the use of the replicated PAR we consider a case
where we want to build a pipeline of filter processes which will look for data
values, as illustrated in figure 5.1. Each stage of the pipeline must do one of
three things:
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upl0] upli] upli + 1]

Py P Pros Ps

down[0] downli] downli + 1]

Each process i reads from upli — 1] and writes to uplil.
Each process i reads from down[i] and writes to downli — 1].

Figure 5.1 Hlustration of a pipeline

® count an item
@ pass an item on.
@ pass the item couant to a receiving process and terminate

We assume a number of global declarations as follows,

VAL scan.values IS [ ... ]:

CHAN OF INT in[SIZE scan.values+l]:
CHAN OF INT collect[SIZE scan.values]:

Here scan.values is an array of data items to look for, in is an array of
channels for passing data in and out of pipeline stages and collect is an array
of channels for collecting the item counts.

The pipeline can then look like this:

VAL INT terminate IS -1:

PAR ix = ( FOR (SIZE scan.values-1)
INT item: ‘
INT count:
BOOL running:

VAL input IS in[ix]:
VAL output IS in[ix+l]:
VAL myvalue IS scan.values([ix]:

SEQ ‘
running := TRUE
count := 0
WHILE running

SEQ
input ? item
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IE‘.
item = terminate
SEQ
output ! terminate
collect[ix] ! count
running := FALSE
item = myvalue
count := count + 1
TRUE
output ! item

Whilst this represents code for the pipeline process, the pipeline itself will
be embedded in a larger program which includes a data source, a data sink,
and a count collector. The data item that closes down the pipeline, namely
terminate, must be passed onto the next stage. The data source passes a
terminate item into the pipeline and the pipeline closes down in sequence.
In a later section the collection of program fragments together to form
procedures will be discussed, and a more elegant solution to this problem
will be presented.

It should be remembered that, as discussed in the last chapter, com-
ponents of arrays in occam begin at zero. This affects use of arrays in
replicated statements. An array like scan.values which is declared as

CHAN OF INT in[SIZE x]:

is indexed from in{0] up to [SIZE x-1]. This means that care must be taken in
the VAL declarations, since this aspect of array declarations affects the
program quite considerably.

5.2.3 Replicated IF
The syntax for the replicated IF is the following:

conditional = IF replicator

choice
replicator = name = base FOR count
base = expression
count = expression

The keyword IF and the replicator, which is to the right of the keyword, are
followed by a choice which is indented by two spaces. The replicator
specifies the name for the index which does not need to be declared
elsewhere. The value of the index for the first replication is the value of the
base expression, and the number of times that the process is replicated is the
value of the count expression at the start of the sequence. The index, which
has a value of type INT, can be used in the expression but it cannot be assigned
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to by an input or an assignment. The base and count expressions are also of
type INT, and must be constant values. A value for count such that count <
0 is invalid, and the case count = 0 means that the replicated IF sequence
behaves like the primitive process STOP.

The replicated IF produces a conditional construct with a number of
choices which are similarly structured. For example,

IF i = 0 FOR 3
array[i] = 0
array[i] := 1

would check the first three elements of the array for a zero. The first
element which it finds to be zero it will replace with a one. One of the
problems of this program fragment is that if no element is found to contain a
zero the program will stop. We would like to conclude the replication with a
TRUE SKIP, but as stated earlier no replication construct can be only
partially executed. A solution to the problem is to us the concept of ‘nesting’
the replicated IF construct within another IF construct, for example:

Iy
IF i = 0 FOR 3
array[i] = 0
array[i + 1] =1
TRUE
SKIP

which will now execute the SKIP if no zeroes are found. The program will
continue after the replication whether or not a zero is found in the elements
of the array. ‘

An examination of the formal definition of the replicated IF statement will
reveal that it evaluates its conditions in sequence, looking for the first one
that is true. This suggests an elegant solution to a common programming
problem, namely that of finding the first element of an array that obeys some
rule. For instance, suppose that we want to find the first non-zero element in
an integer array, called items:

[ 1INT items: —— array of integers
INT first.non.zero:

IF
IF i = 0 FOR SIZE items
items[i] <> 0
" first.non.zero := i
TRUE ‘
first.non.zero := -1

Here, we simply create a reblicatcd IF over the elements of the array. If



52 occam 2 on the transputer

there is a non-zero item, its index will be returned in first.non.zero. If the
array is all-zero, then the TRUE branch will return an index of —1. Note that
if the TRUE branch was missing and the array was all-zero then the replic-
ated IF would be equivalent to STOP.

5.2.4 Replicated ALT
The syntax for the replicated ALT is

alternation = ALT replicator

alternative
replicator = name = base FOR count
base = expression
count = expression

The keyword ALT and the replicator, which is to the right of the keyword,
are followed by the alternative which is indented by two spaces. The replic-
ator specifies the name for the index, which does not need to be declared
elsewhere. The value of the index for the first replication is the value of the
base expression, and the number of times that the process is replicated is the
value of the count expression at the start of the sequence. The index, which
has a value of type INT, can be used in the expression but it cannot be assigned
to by an input or an assignment. The base and count expressions are also of
type INT, and must be constant values. A value for count such that count <
0 is invalid, and the case count = 0 means that the replicated ALT sequence
behaves like the primitive process STOP.

A replicated ALT consists of a number of identically structured alternative
constructs, each of which is triggered by input from a channel. For example,
a program fragment that would act as a multiplexer might be

[40]CHAN OF INT in :
CHAN OF INT out :
PAR
...processes providing data on in channels
WHILE TRUE
INT vy :
ALT i = 0 FOR 40
inf{i]l ? v
out ! vy
...processes taking data from out chamnel

This monitors 40 input channels; when any one of them has any data the data
is passed to the out channel. Hence communication from the 40 channels is
merged into the out channel. This illustration of multiplexing of data forms
the basis of many applications in the control and switching of networks, and
the monitoring of equipment.
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[3]CHAN OF INT priority:

PRI PAR i = 0 FOR SIZE priority
INT value:
SEQ-
priority[i] ? value

-- code to handle message of priority i

In this case notice that each handler process will be based on the same
occam code, but will run independently. If we wanted each priority level to
be handled in a different manner we would have to write

PRT PAR
INT value:
SEQ
priority[0] ? value

—— code for priority 0
INT value:
SEQ

priority[l] ? value

-- code for priority 1
INT value:
SEQ

priority[2] ? value

-— code for priority 2

where 0 is the highest priority level and 2 is the lowest level. »

As another example, we might wish to respond to timeouts very rapidly '
while handling other messages in a more leisurely manner; consider the
following: "

CHAN OF INT request: _ i
PRI PAR , i
TIMER clock:
VAL INT delay IS t:
INT time:
SEQ -~ wait for timeouts
clock ? time
WHILE TRUE
SEQ
time := time PIUS delay:

/

{
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clock ? AFTER time
— respond to timeout

INT value:
SEQ — wait for lower priority requests
request ? value

— respond to request

53.2PRIALT

In section 5.1 we considered the construct to provide the option of selection
of alternative processes, namely the ALT construct. Just as with the PRI PAR
where we are able to give a priority to processes which are to be executed in
parallel, so with the PRI ALT we have the ability to give priority in execution
to a series of alternatives. The syntax for the construct is given by

alternation = PRI ALT
{alternativel
| PRI ALT replicator
alternative

where the keywords PRI ALT are followed by zero or more processes which
are indented by two spaces. As with the ALT construct described earlier in
section 5.1, the alternative may be replicated. For example:

PRI ALT
stream ? blocks
SKIP
TRUE & SKIP
Pl

In this case the process inputs blocks if an input from channel stream is
ready, otherwise if the boolean TRUE is valid then the process P1 is
executed. The use of the TRUE & SKIP guard in the PRI ALT construct has
many uses.

~ In some senses the PRI PAR appears as an alternative to the PRI ALT
statement. However, they have very different semantics. The PRI PAR -
statement produces a number of independent processes running at various
priority levels; the PRI ALT statement produces a single process which waits
for input events at various priority levels. For example, consider the
following:
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[3]CHAN OF INT priority:

PRI ALT i = 0 FOR SIZE priority
INT value:
SEQ
priority([i] ? value

—— message handling code

Comparing this with the example in the previous section shows that here we
have one process which is waiting on a number of channels, whereas in the
previous section we had a number of processes waiting on a number of
channels simultaneously.

5.4 Protocol

We have already described how a channel is used to communicate between
two concurrent processes. The format and data type of these channels is
specified by the channel protocol. This protocol is specified when the
channel is declared. The definition has to be such that the input and output
using the channel must be compatible with the channel protocol specified
for that channel. Thus channel protocols allow the compiler to check on the
correct use of the channels. The simplest protocols have already been
described and consist of a primitive data type, such as a byte protocol, or an
array data type. The syntax for simple protocols is

simple.protocol = type

primitive.type :: [ltype

input channel ? input.item
input.item = variable

| variable :: variable
output = channel ! output.item
output . item variable

expression :: expression
simple.protocol

protocol

So a simple protocol is either a data type or a counted array as specified
by the data type of the count, which can be either an integer or byte,
followed by a double colon, square brackets and a specifier indicating the
type of the components. For example, for the declaration of

CHAN OF INT::[]BYTE mail :

declares a channel called mail which outputs first an integer, then that
number of items from an array as specified by this integer. If an output on
this channel is given by
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mail ! 11::"The machine needs updating"

the effect of the declaration will be to output the first 11 characters of the
message, namely ‘The machine’.

1t is often convenient to give a name to a protocol and this can be done in
a protocol definition. The syntax for this is

PROTOCOL name IS simple.protocol

definition =
| PROTOCOL name IS sequential.protocol
protocol = name

A protocol defines the name, which appears to the right of the keyword IS
if a simple protocol as described above is used or that of a sequential
protocol which will be described in the next section. Whilst the definition
occurs on a single line and is terminated by a colon, the line may be broken
after the keyword IS or after a semicolon in a sequentxal protocol. For
example, in the definition ‘

PROTOCOL CHAR IS BYTE :
a channel with the protocol CHAR can then be declared as

CHAN OF CHAR mail :

5.4.1 Sequential protocol

Having established simple protocols, a sequence of such protocols can be
defined by means of the sequential protocol definition. The syntax for this is

It

sequential.protocol {1;simple protocol}
input = charmnel ? {1;input.item}

input.item = variable

| variable :: variable
output = channel ! {1;output.item}
output.item = variable

| expression :: express:.on

A sequential protocol is one or more sxmple protacols separated by semi-
colons, and the definition is terminated with a colon. The communications
ona channel are then valid provided that the type of the input and output on
that channel are compatible with the corresponding component of the
protocol. For example,

PROTOCOL COORDINATE IS REAL32; REAL32; REAL32 :

- allows channels to be declared with this protocol which will pass values in
groups of threes. The definition
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CHAN OF COORDINATE data :
would, for example, allow input on the channel data in a form
data ? xvalue; yvalue; zvalue

where each value is input in sequence and assigned to each variable in turn.

5.4.2 Variant types

Although we have so far emphasised the need for the data transmitted via a
channel to be of the same type as the definition of the channel via which the
communication is to take place, it is often useful to be able to communicate
through a single channel data which is of different formats. To provide this
facility, variant protocol allows the definition of a channel protocol to specify
a number of possible formats that may be used with a given communication
channel. The definition of the variant protocol is different for the situations
of input and ountput. We consider first the case of output, for which the
syntax for the variant protocol is

definition = PROTOCOL nare
CASE
{tagged.protocol}

tag

tagged.protocol =

: | tag;sequential.protocol
tag = name

output channel ! tag

channel ! tag;{1l;output.item}
variable
expression :: expression

output .item

— b — 1

Here the name defined by the variant protocol appears to the right of the
keyword PROTOCOL, which is followed by the keyword CASE at an
indentation of two spaces. The keyword CASE is then followed at an
indentation of a further two spaces by a series of tagged protocols. The
definition is finally terminated by a colon, which is on a line by itself at the
same level of indentation as the character P of PROTOCOL. A tagged
protocol is either a tag by itself or a tag followed by a semicolon and a
sequential protocol. Tags themselves are names which must be distinct and
must be defined only within the variant protocol. In the case of output on a
channel of variant protocol the output is a tag by itself, or it is a tag followed
by a series of output items which are each separated from each other by
semicolons. The output is then valid only if the tag or the associated output
items are compatible with one of the tagged protocols specified in the
definition.
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As an example, consider the possible requirement to output data which
may be either of type INT or type REAL32:

PROTOCOL: INT.OR.REAL
CASE ’
Fixed ; INT
Floating ; REAL32

CHAN OF INT.OR.REAL chanvalue :

PAR
SEQ
chanvalue ! Fixed; I —-- integer
chanvalue ! Floating; R -- real

Here the channel chanvalue is used to communicate a value of type INT or
type REAL32.

So far we have considered .the use of variant protocol for output, For
input the situation is rather more complicated. This is because the reading
process does not know the type of object which is being transmitted and
therefore it has to have a series of possible read actions depending on the
type of the data, one for each tag field. The syntax for the variant protocol in
this caseis

channel ? CASE
{variant}
variant = tagged.list
process
| specification
variant
tag
tag; {1;input.item}
variable
variable :: variable
case.input
charnel ? CASE tagged.list

case.input

tagged.list

input.item

- — 1

process
input

A case input receives a tag from the channel which is named to the left of
the case input symbol ‘? CASE’, and this tag is then used to select from one
of the variants. These variants appear on the following lines indented by two
spaces. When a tag is input, if the variant with that tag is present then
the process next inputs the remainder of the tagged list, and an associated
process which is indented by a further two spaces is performed. If no variant
with that tag is found the process next behaves like the primitive process
STOP. A case input may only consist of a tagged list.

For example, if we wish to modify the earlier code to allow the input of

values which may be tagged to be of type INT or REAL32, we could have
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PROTOCOL INT.OR.REAI, -
CASE
Fixzed ; INT
Floating ; REAL32

CHAN OF INT.OR.REAL chanvalue :

PAR ‘

SEQ -—- process for output
chanvalue ! Fixed; I -— integer
chanvalue ! Floating; R -- real

SEQ -~ process for input
chanvalue ? CASE

Fixed ; J
This.Is.An.Integer := TRUE
Floating ; S
This.Is.BAn.Integer := FALSE

"This will either read a value of type INT into J via channel chanvalue, and set
the boolean This.Is.An.Integer to TRUE, or read a value of type REAL32
into R via the same channel chanvalue and set the boolean This.Is.An.-
Integer to FALSE. Only one of these actions will take place before the case
input process terminates. If neither of the appropriate tag values is
found then the case input process behaves as the primitive process STOP.

Whilst the use of variant protocol allows the selection between several
different data types for input and output via a communication channel, there
can be occasions where we seek to specify a channel protocol where the
format for that channel cannot be defined. An example of this situation
could be communicating with external devices such as printers and ter-
minals. This means that the compiler does not perform runtime checks or
detect any errors if the channel is misused. The channel protocol definition
is given by

CHAN OF ANY :
For ekample,

CHAN OF ANY terminal:
PLACE terminal AT 1:

is the definition that has to be used to map data onto a terminal screen.
This is a historical reason, and the use of the definition CHAN OF ANY is
not recommended for common use.

In an ISO-type protocol handler, which is illustrated in figure 5.2, the
physical communication channel can be viewed as a nested series of
channels, each with its own protocols. In the diagram, data flowing from
level 2, for example, will be wrapped up in the protocol of layer 1; the
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resulting data will be wrapped up in the protocol of layer 0 and then
transmitted over the physical channel. The receiving end unwraps the
protocol, layer by layer, with each layer collecting the appropriate data. This
allows the various layers to communicate without concern for the layers
below them, other than assuming that such layers exist.
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A 5
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e T > Level3

A :

! A
Level2 (=& > Levé|2

A , k

A . '
Level1 |= 1 Loves

) \

Y V

| Level0 |« Protocol layer0

l_.___‘ (Physicallayer) Level 0

Figure 5.2 Ilustration of an ISO-type protocol handler |

Variant protocols allow the programmer to explicitly define messages which
are ‘out of band’ — that is, they are control messages rather than data
messages. In this case each handler may want to send messages to the
corresponding message handler on the far end of the communication
channel. One approach would be to encode the messages in some other way
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using the existing channel protocol. For example, on a CHAN OF INT, we
could encode a control message by prefixing it with four —1 values followed
by an integer representing the message; however, if the user of the channel
ever decides to send four -1 values as data then trouble is likely to ensue.

An alternative, and safer, approach is to use a variant protocol. For
example,

PROTOCOL Int.Or.Message
CASE
Flush.Buffer
Close.Channel
Message; INT
Value; INT

CHAN OF INT Int.Or.Message chan:
We can handle such a protocol at the receiving end as follows:

INT message.value:
INT wval:
SEQ
chan ? CASE
Flush.Buffer
-— code to flush the input buffer
Close.Channel
—-- terminate this listening process
Message: message.value
=- act on the message
Value; val
—— pass the value on

Using a variant protocol, we can rewrite the example in section 5.1.5 as
follows:

PROTOCOL Int.Or.Message
CASE
Dump.Array
Terminate
Int.Value; INT



6 Expressions

In the previous chapter we used the term ‘expression’ without detailed
discussion of the range of operations that can be covered in occam. In its
simplest form an expression has been regarded as performing an evaluation
and producing a result. The result of an expression has a value and a data
type. The simplest expressions are literals and variables, and more complex
expressions can be constructed from operands, operators and parentheses.
An expression can itself be an operand in an expression. The syntax of this
representation is

expression = monadic.operator operand
| operand dyadic.operator operand
| conversion
| operand

operand = element

' | literal

| table
| (expression)

so an operand is either an element of a data type, a literal, a table or another
expression enclosed in parentheses. Elements have already been considered
in connection with array types.

We have already pointed out that all variables must be defined and
associated with a single data type. All primitive types, apart from CHAN and
TIMER, have the assignment operator defined. Literals, which are textual
representations of a known value, can also be used with all data types.

Literals have not been presented before, and their syntax is

literal = integer
| byte

| integer (type)
| byte (type)

| real (type)

| string

|

TRUE | FALSE

64
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integer = digits | #hex.digits
byte = !character’
real = digits.digits | digits.digitsEexponent

exponent +digits | ~digits
digit 01112131415/
hex.digit =digit 1A | B C| D]

All characters are coded according to their ASCII code, so that the
character a has a value of 97. A character enclosed in a pair of single quotes,
such as ‘B, is a byte value, unless its type is explicitly stated otherwise in
parentheses after its value, as in the example below for K. A string literal is a
sequence of characters enclosed in a pair of double quotes, such as “today”
in the example below. Each component of the string is represented by the
ASCII code for that particular character, so that “today” is represented by
the values, 116, 111, 100, 97, 121. Some examples of literals are:

6171819
EI|PF

J =6 an integer literal

Running . := TRUE a boolean literal

Char := 'b’ a byte literal

Mail ;= "today" a string literal

Pi := 3.1416 a real literal

Inc := 0.3E+2 another real literal, wvalue 30.0
Delta := 1.4E-2 yet another real literal, value 0.014

In order to clarify the type of a literal, its type may be added in paren-
theses after the literal, for example,

e := 2.718 (REAL32)

is valid. This can be extended in a useful way to provide a possibility to
respecify the type of a literal. For example,

K = "B’ (INT)

means that the character literal which is of type BYTE can be interpreted as
a value of another integer type.

To return to the nature of expressioms, the following are all valid
expressions:

2.718 (REAL32) a literal value

X a variable

3+ 2 addition of two literal operands /
X -y subtraction of two variables operands
NOT FALSE a boolean expression

An expression can itself form the operand in an expression, and by this
means larger expressions can be built up, for example,
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(x *y) + 2z mltiply the variable x and y and add
the variable z to the result

Unlike some other systems there is mo operator precedence and the
hierarchical structure of expressions has to be shown by the use of paren-
theses, as in the case above. It should also be noted that with the exception
of shift operations, the data type of the two operands in a dyadic expression
must be of the same type. In an assignment the value of the expression has to
be of the same type as the variable to which it is to be assigned.

A table constructs an array of values, each component of which is the
value of the corresponding expression, from a number of expressions. The
values must be of the same type. The syntax for the table is

table = table [subscript]

| [{1,expression}]

| [table FROM subscript FOR count]
subscript = expression
count = expression

so that a table is one or more expressions of the same data type which are
separated by commas and enclosed in square brackets. Line breaks are
permitted after a comma. For example,

[a,b,c] a table of three values.
['ad’,'o’,’g"} a table of three bytes equivalent to "dog"

One of the major uses of tables is in assigning values to arrays, for example:
[8]1INT a.1, a.2:
INT 1.1, i.2, 1.3, i.4:
SEQ
a.l := [0,1,0,1,0,2,0,1]

[a.2 FROM 0 FOR 4] := [0,1,0,1]
[1.2,1.2,1.3,1.4] = [a.1 FROM 3 FOR 4]

would all be valid assignment statements.

6.1 Arithmetic operators
As has already been described, operations evaluate operands and produce a
result. For the case of arithmetic operations, the following operators exist:

+ addition
- subtraction
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* maledplication

/ division

REM . remainder

\ remainder

PLUS modulo addition
MINUS modulo subtraction
TIMES modulo multiplication

MOSTPOS most positive
MOSTNEG most negative

The operations of addition, subtraction, multiplication, division and
remainder perform operations upon operands of the same integer or real
data type, but not on boolean or byte data types. The result of an operation
produces a result of the same data type as the operands. If the data type of
the result is not compatible with the data types of the operands then the
operation is invalid. For example if the multiplication of two integers ex-
ceeds the most positive integer value then the operation is invalid. Division
by zero is also an invalid operation.

An expression is defined to be an operand followed by an operator
followed by another operator. The operand itself may be either a variable or
another expression. Fowever, if the operand is another expression then it
must be contained within parentheses, so that if we wish to evaluate an
expression such as

A+B+C

then written in this form it is invalid. It can only be evaluated if written, in
this case, as

(A +B) +C or A+ (B +C)

It is clear then that this means there is no need to have a defined order of
precedence. _
Examples of the use of arithmetic operations are

48 + 6 gives result 54
48 - 6 gives result 42
3 *4 gives result 12
12/ 3 gives result 4
14 REM 3 gives result 2
14\ 3 gives result 2

As regards division, the use of REM and \ produce the same result, namely
the remainder after division of the appropriate value. The sign of the
remainder is the sign of the left-hand side of the expression regardless of the
sign of the right-hand side. When the data types for the division are integers
then the operation of / produces truncation of the result. In the above
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example of 12 / 3 the result would be 4 but if the values where 13 / 3 the
result would still be 4. Notice that the result is truncated and not rounded.

The results of arithmetic operations on real numbers are rounded to the
nearest value that can be represented by that data type. Some care must be
taken when considering the effects of rounding on the results of division of
real numbers. When using / with real data types the result is rounded
towards zero, in contrast to truncation which results in the case of division
by two integer types. It is possible for the result of a real remainder
expression to be negative, for example

2.4 (REAT.32) REM 3.0 (REAL32)

gives the result (~0.6). The rules for rounding that are used are those
defined by ANSI/IEEE standard 754-1985. In this case, if we take a general
expression of the above,

a REM b
where a and b are real numbers, then the result is defined by
(a = (b*n))

where n is given by dividing a by b and rounding towards zero. So, in the
above example, n = 2.4 divided by 3.0 gives 0.8 which when rounded to the
nearest integer gives the value 1. So the expression is then evaluated as

(2.4 - (3.0 * 1)) which equals (-0.6)

The modulo arithmetic operations of PLUS, MINUS and TIMES perform
operations on data items of the same integer data type. Operations on other
data types of real, boolean and byte are invalid. The operations are similar in
effect to the corresponding arithmetic operations already described. How-
ever, no overflow checking is performed on the operation and so the values
are cyclic. Before illustrating this effect it is preferable to introduce the
operations of MOSTPOS and MOSTNEG. MOSTPOS produces the most
positive value of the integer data type, and MOSTNEG produces the most
negative value of the integer type. The syntax for these operators is

expression = MOSTPOS type
| MOSTNEG type

where the keyword MOSTPOS or MOSTNEG appears to the left of the
type. In the case here we have

MOSTPOS INTL16 gives the value 32767
MOSTNEG INTL6 gives the value -32768

Returning now to illustrate the differences between arithmetic and
modulo arithmetic opcrations, we can consider
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32767 (INT16) + 1 (INT16) arithmetic overflow - invalid
32767 (INT16) PLUS 1(INTL6) gives the value -32768
(-32768 (INT16)) - 1L(INT16) arithmetic overflow - invalid
(~32768 (INT16) ) MINUS 1 (INT16) gives the value 32767
10000 (INT16) * 4 (INT16) arithmetic overflow - invalid
10000 (INT16) TIMES 4 (INT16) gives the value -25535

It should be borne in mind that the AFTER statement for reading from
timers looks at the unsigned value of an integer. As a result, '

32767 (INT16) PLUS 1 (INT1l6)
is indeed, AFTER
32767 (INT16) -

despite the result of the addition being an apparently negative number.

6.2 Bit and shift operations

The bit pattern of values of the data type integer may operated on by blthSC
operations. The possible operations are

/\ bitwise AND
\/ bitwise OR
>< bitwise exclusive CR
~ . bitwise NOT

The result of a bitwise operation is of the same type as the operands. In
some implementations where there is a reduced character set, keywords
BITAND, BITOR and BITNOT are equivalent to /\, \/, and ~ respectlvely
The results of the corresponding operations are:

Bitwise AND Bitwise OR Bitwise exclusive OR Bitwise NOT

0><0=

0/\N0 =20 0\/0=20 0 ~0 =1
0/\N1=0 0N/ 1=1 0><1=1 ~1 = Q
1/\N0=20 1\/0=1 1>0=1
1/AN1=1 1\/1=1 1><1=0

For example, if we take the following values, all of type INT16,
patternl #C3C3 i.e. 1100001111000011
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pattern2 #9B9B i.e. 1001101110011011
pattern3 #0404 i.e. 0000010000000100
pattern4 #FFEF i.e. 1113111111311131111

then for the following operations we have

patternl \/ pattern2 gives #DBDB i.e.  1100001111000011
OR 1001101110011011

#DBDB  1101101111011011

patternl >< pattern2 gives #5858 i.e. 1100001111000011
XOR 1001101110011011

#5858 0101100001011000

pattern4 /\ pattern3 gives #0404 i.e. 111111131112311111
AND 0000010000000100

#0404 0000010000000100

Thxs example of the AND function illustrates the ability to prowde a mask
to interrogate the setting of bits within a bit pattern:

patternl gives #3C3C i.e.  1100001111000011

NOT #3C3C 0011110000111100
Whilst this gives the complement of the value, we could achieve the same
result by use of the exclusive OR with the value #FF. For example,

patternl \/ patternd gives #3C3C i.e. 1100001111000011
XOR 11111111111333111

#3C3C  0011110000111100

In addition to these bit operations, there are also operations which allow
the shifting of values to left or right by a specified number of places Shifts
are only possible on values of data type integer, and the operation is given in
the form

value << count shift left by number of places in count
value >> count shift right by number of places in count

The shift operation is not cyclic and there is no carry so that bits shifted
out from the most significant bit on the shift left are lost, and zeros are
added to the least significant bit on each shift. In the case of shift right, bits
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“shifted out from the least significant bit are lost and zeros are added to the
most significant bit on each shift. If the value is of type INT16 and of value,
called x say, #C39B, then we could have

x << 3 #C39B 1100001110011011
shift 3 places left  0001110011011000

giving #1CD8. For the case of

x >> 4 #C39B 110000111.0011011
shift 4 places right 0000110000111001

' the result is #0C39. If count is 16 then for integers of type INT16 the result
is zero whether the shift is to the left or right. Similar results occur if the
integer type is INT32, only count would need to be 32 before the value was
always zeroed. In cases where count > 16 for INT16 or count > 32 for
INT32 integer types the shifts are invalid. Shifts are also invalid if count is
specified as being negative.

One application for these bit operators is in picking areas out of
input-output registers on physical devices. If an input-output device has a
status register of size INT16 where the top eight bits are a status value and
the bottom eight bits are a device number, we could do the following:

INT16 register.value:
INT16 status.bits:
INT16 device.id:

SEQ
register.value := Register
status.bits := (Register AND #FF00) >> 8
device.id := (Register BND #O0FF)

If we want to construct a value to write into an input-output register, we
could reverse the process:

INT16 register.value:
INT16 status.bits:
INT16 device.id:

SEQ
-—- assign device.id
~- assign status.bits
-register.value := (status.bits << 8) OR device.id
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6.3 Boolean operations

The boolean operators combine operands of the boolean type, and the
possible operators are:

AND boolean and
OR boolean or
NOT boolean not

The following results are then produced:

e AND
false AND true = false
false AND false = false
true AND false = false
true AND true = true

e OR
false OR false = false
false OR true = true
true OR false = true
true OR true = true

e NOT
NOT false = true
NOT true = false

During the evaluation, the operand to the left of the operator is evaluated.
If the result of this evaluation and the nature of the operator is such that the
result is then determined, then the evaluation stops at that point and the
operator to the right of the operator is not evaluated For example, for the
expression

IF
ch > 'd’ AND ch <= 'x’

then if the condition ch > = ‘d’ is false there is then no need to evaluate for
the condition of ch < = %’ since the outcome is false. If the expression is
altered to

IF
ch >= 'd’ OR ch <= 'x’

then if the condition ch > = ‘@’ is true then there is no need to evaluate the
condition of ch < = % since the outcome is true.
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6.4 Relational operations

The relational operators perform a comparison of the operands and pro-
duce a boolean result. The possible relational operators are '

= equal
<> not equal
< less than

> greater than
<= less than or equal
>=  greater than or equal

In the case of relational expressions which use the operators = and < >
the operands may be of any primitive type. However for expressions which
use any of the other operands, namely <, >, <=, > = then they may only
be used in conjunction with operands which are of type integer, byte or real
and may not be used with boolean operands. To illustrate the operation,
consider the operands b and c to be of the appropriate type as required, then

b=c

b < ¢

b > ¢

is true-if the value of the operand b is equal

to the value of operand c otherwise the result is
false

is true if the value of the operand b is not
equal to the value of operand c otherwise the
result is false

is true if the value of the operand b is less
than the value of operand ¢ otherwise the result
is false -
is true if the value of the operand b is greater
than the value of operand c otherwise the result
is false

is true if the value of the operand b is less
than or equal to the value of operand c otherwise
the result is false

is true if the value of the operand b is greater
than or equal to the value of operand c otherwise
the result is false.

Other operators can be combined with BOOL variables and operators to
calculate quite complex conditions. For instance, to decide whether a
character is a control character, as opposed to being out of range or a
printable character,
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BYTE ch:
BOOL is.control:

SEQ
is.control := (ch < #FF(BYTE)) BND ((ch <’ ') OR
{ch > "~"})
6.5 Other operations

In addition to the operations that have been described so far in this chapter,
some other expressions exist which are worth noting, We introduce here two
such expression operations, AFTER and SIZE. The expression AFTER has
already been used in connection with the use of the TIMER. The operator
AFTER performs a comparison and returns a boolean result to test whether
one operand occurs after another. If b and ¢ represent two operands then
the expression

(b AFTER c)

will return the result true if the operation of b is in a later cyclic operation
than that of c. Whilst this was introduced in the context of timing and the
clock, it can be used for any types which are represented in a cyclic
sequence. If the shortest route in such a sequence from the first operand to
the second operand. is clockwise then the result of the expression will be
true, but if the shortest route from the first operand to the second is
anticlockwise then the result will be returned as false. Thus for a cyclic series
of operands the expressions of

(b AFTER c)
and
(a MINUS c¢) > 0

will produce the same result.

The operator SIZE has a single operand of array type and it produces an
integer value of type INT which gives the number of elements in the
particular array. For example if b is an array of type [16]INT, then

SIZE b

will produce the value of 16 as the result.
" As an extension of this to a more complex array definition, if b is an array
of type [16][8]INT, then

SIZE b gives the result 16 as before
SIZE b[l] gives the result 8§
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© INT32 TRUNC 0.8 (REAL32) gives the value 0
INT32 TRUNC 0.2 (REAL32) gives the value 0

Using the same values for the real numbers b and c gives

INT16 TRUNC b gives the value 5
INT32 TRUNC c gives the value 4
INT16 TRUNC (b/c) gives the value 1

(INT ROUND b) * (INT ROUND c) gives the value 24

A conversion between any of the integer types, and conversions between
those types and the type BYTE are valid only if the value that is produced is
within the range of the receiving data type. In particular byte and integer
types may be converted to each other if their value is one or zero. Thus,

BOOL 1 gives TRUE
BOOL 0 gives FALSE
INT TRUE gives the value 1

INT FALSE gives the value 0



7 Procedures and functions

7.1 Abbreviations

Before considering the use of procedures and functions in occam, we must
introduce the use of abbreviations. There are two kinds of abbreviations,
which can be used to specify

e aname for an expression
@ aname for an element

The name which is specified in the abbreviation is then used as an alias for
the expression or the element.

The syntax for the use of an abbreviation which spec1fies the name for an
expression is

abbreviation = VAL specifier name IS expression:
| VAL name IS expression:
specifier = primitive.type
| [lspecifier
| [expression]specifier

The abbreviation of a value starts with the keyword VAL. An optional
specifier which specifies the data type: of the abbreviation appears to the
right of VAL, and this is followed by the keyword IS. The abbreviated
expression appears to the right of the keyword IS. Continuation lines are
allowed after the keyword IS. The data type of the expression must be of the
same type as that of the specifier, which itself can usually be omitted from
the abbreviation since its type can be inferred from the expression that is being
abbreviated. A specifier [] type simply defines the abbreviation as being an
array with components of the specified type. We have already met some of
these concepts in section 4.1.3 when considering constants, for example,

VAL INT week IS 7:
could equally be written as
VAL week IS 7:

77
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since the data type of the abbreviation week can be inferred from the fact
that the constant 7 is of type INT. Here the name week is defined as an
abbreviation constant value 7. For the following example

VAL INT weeks.in year IS 52:

specifies the name weeks.in.year for the constant value of 52. Again the use
of the abbreviation has already been used in another example in section 4.1.3
where the constant value to be used to test for termination was given the
name terminate:

VAL INT terminate IS (-1):

The abbreviated expression must be a valid expression, so that it must not
overflow and all subscripts must be within range. Variables which are used
in an abbreviated expression may not be assigned to by an input or assign-
ment within the scope of the abbreviation, which is the region of a program
where the name is valid. This means that the value of the abbreviation stays
constant within the scope of the abbreviation. So, for example,

VAL REAL32 y IS (m * x) + c:

means that no assigninent can be made to the parameters m, x or ¢ within
the scope of the abbreviation.

Abbreviations such as the name of an element may be made for an element
of an existing variable, channel, timer or array. The syntax for the use of
abbreviation as the name for an element is

abbreviation = specifier name IS element:
name IS element :

[Ispecifier

|
specifier = primitive.type
!
| [expression]specifier

The abbreviation of an element begins with an optional specifier. The
name specified appears to the right of the optional specifier followed by the
keyword 18, to the right of which appears the abbreviated element. Con-
tinuation lines are allowed after the keyword IS or after any other valid point
in the element. The type of the element must be the same as the specifier for
the abbreviation to be valid. Just as with the abbreviation of expressions, the
specifier can usually be omitted from the abbreviation since it can be
inferred from the type of the element. A specifier [Jtype defines an abbrevia-
tion as being an array with the components of the spemﬁed type.

As examples of abbreviation of an element,

INT b IS c:

would specify the name b as the new name for the element c, and.
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INT x IS a.l1[l]

would specify the name x to the element of the array a.1 which is the second
component of the array namely a.1[1].

As with the case of the abbreviation of expressions, care must be taken
that when abbreviating components of an array, all the components of the
array remain identified by a single name within any given scope. Checks are
made to ensure that two abbreviations which identify segments from the
same array do not overlap: this would then be invalid.

7.2 Scope

In the previous section we have considered more formally the use of abbrevia-
tions, though they have been used earlier in the book. We have also referred
to the scope in connection with abbreviations. This concept is not itself new,
but is worth summarising the formal syntax for scope as follows,

process = specification
process
choice = specification
choice
option = specification
option
alternative = specification
alternative
variant = specification
variant
valof = specification
valof
specification = declaration
| abbreviation
| definition

This syntax specifies the point in a program where a declaration, abbrevia-
tion. or a definition may occur. The specification may appear before a
process, choice, option, alternative, variant, or valof. The region in the
program where such a specification is valid includes any other specification
which may occur at the same level of indentation, and the corresponding
process, choice, option, alternative, variant or valof. For example,

INT y: —-- integer variable y
SEQ —— SCcope
input ? y -

ALT i
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REAL3Z y: — real y hides integer variable y
chan ? y — scope
. — scope

Notice in this example that the apparent conflict in specification of the
variable y is covered by the limits of the scope of each specification. Because
of the change in level of indentation necessary within the ALT construct, the
second declaration has the effect of hiding the earlier use of the same name
y for the duration of its scope. All names within a given scope in occam are
distinct. The association of a name with a particular scope can be either
local, and as such specified at the start of the scope under consideration, or
free of local association. If as in the example above a specification is made of
an existing name, in that case y, then the new meaning supersedes the old
meaning for the duration of the scope of the new specification. The above
program could equally have been written as

INT y: —-— integer variable y
SEQ -~ scope
input ? y ——
ALT —
REAL32 x: —- real variable x
chan ? x -— Scope
—-—. SCope
7.3 Procedures

In occam the basic operation is that of a process. Procedures in occam
provide a definition of a name for a process. For example, for the process
below,

PROC decrement (INT y)
SEQ
yi=y-1

gives the name ‘decrement’ to the occam process which performs the
operations between the name and the terminating colon. In this case the
process is simply the operation y : = y— 1. The parameter y in the case above
is a formal parameter of the process and is specified in parentheses after the
procedure name. Having defined the procedure decrement then it may be
subsequently used in a program; for example,

INT x:
SEQ
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decrement (x)

The syntax for the definition of procedure is

definition = PRQC name ({0, formal}l)
procedure.body

The keyword PROC, the name of the procedure, and a formal parameter
list enclosed in parentheses is followed by a process which is indented by
two spaces and is the body of the process. The procedure definition is
terminated by a colon which appears on a new line at the same level of
indentation as the start of the PROC definition.

The syntax of when the procedure is called from within the program is

instance nanme ({0, actuall})
actual = @lement
| expression

The instance of the procedure is the name of the procedure followed by a
list of zero or more actual parameters in parentheses. An actual parameter is
itself either an element or an expression. The list of actual parameters must
correspond directly to the list of formal parameters used in the definition of
the procedure. The actual parameter list must have the same number of
entries, each of which must be compatible with the kind and type of the
corresponding formal parameter. It should be noted that unlike those in
some other languages such as Pascal, occam procedures are not recursive. A
channel parameter or free channel may only be used for input or output, but
not both, in the procedure.

In section 7.1 we considered the definition for abbreviations. The rules for
the parameters used in procedures are the same as those described for
abbreviations. A name which is free within the body of the procedure is
statically bound to the name used in the procedure definition.

One of the major uses for a procedure is to take a particular task, or
section of a task, and define it separately. One example which has appeared
several times above is the example of a filter process which takes data from a
channel, looks for a particular value and outputs the remaining data on a
channel.

Using the protocol definition

PROTOCOL Int.Or.Message
CASE
Dump.Count
Int.Value; INT
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we could define a procedure to achieve the filter process as follows:

@ count the number of items of value ‘val’
® when we get a ‘Dump.Count’ message output the count and terminate

PROC filter.value (INT val ,
CHAN OF Int.Or.Message input, output,
CHAN OF INT dunp)

BOOL running:
INT local.value, count:

SEQ
running := TRUE
count := 0
WHILE running
SEQ
—— look for a data value or a Dump.Count message
input ? CASE
Int.Value; local.value

IF
local.value = val
count := count + 1
TRUE .
output ! local.value
Dunp . Count
SEQ
—— output the count and terminate
PAR

dump ! count:
output ! Dump.Count
running := FALSE

We can use this procedure to form a pipeline of filter processes. Using
procedures in this way makes it much simpler to modify a large pipeline,
either to change the size or change the data values.

The above procedure could be embedded in a larger occam program in
the following way, where we assume the same protocol definition;

-- define a list of data values to be locked for

VAL [5]INT values IS [1,3,5,7,9]:



84 occam 2 on the transputer

feeder (chan{0])
-- run the filter process in parallel
PAR ix = 0 FOR SIZE values
filter.value (values[ix], chan[ix], chan[1x+1],
dump.channels[ix])
-- run the consumer process at the end of the pipeline
consume (chan [SIZE values])
—-— run the dumpprocess which listens for the filters
—- terminating
dump . values (durp.channels)

Notice that each filter process at position ‘ix’ in the pipeline inputs on
channel ‘%’ and outputs on channel ‘x+1°,

This example raises two general points about occam processes which are
formed into pipelines. Firstly, it is usually wise to draw a diagram of the

process pipeline and label the various processes and channels; this makes it

much simpler to convert the pipeline into an occam program, since you can
constantly refer back to the diagram to avoid confusion. Secondly, always
take account of the beginning and end of a pipeline; the processes that feed
and empty pipelines are just as important as the processes that form the core
of the pipeline. Careful design of the boundary processes can often simplify
the design of the core processes, making them cleaner and more efficient.
For example, out-of-range data should always be filtered out by the process
which is feeding the pipeline; in this way, the core processes need never
concern themselves with invalid data.

The dump.values procedure looks at a range of channels, expecting data
on all of them. The procedure definition for this will be

PROC dunp.values ([]CHAN OF INT dump.channels)
-— dump the counts

Notice that the size of the channel array is not specified — it can be
determined inside the procedure using ‘SIZE dump.channels’. The most
obvious way to code this procedure is with a replicated ALT over the
channels, of the form

INT local.value:
BOOL running:
SEQ
-- initialise
WHILE running
ALT ix = 0 FOR SIZE dump.channels
dump.channels[ix] ? local.value
—— output the count
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This allows the data to arrive from the filter processes in a completely
arbitrary order. However, this makes the termination condition difficult to
code. If we examine the filter pipeline we notice that the counts will be
arriving in a completely predetermined order — as the Dump.Count
message flows through the pipeline, the various filter processes pass on their
counts and terminate. As a result, the channels on which the counts arrive
will be ready in sequence along the pipeline from dump.channels[0]
upwards. This implies that we can code the dump.values procedure as
follows: ‘

INT local.value:

SEQ ix = (0 FOR SIZE dump.chamnels
durp . channels [ix] ? local.value
-— output the count

There is no fear of deadlock in this case. This has the added advantage that
the termination condition is clear — once every filter process has passed on
its count, the dump.values process can terminate.

7.4 Functions

In the prewous section a reminder was given that the basic operation in
occam is that of a process, and that procedures were named processes.
Functions also exist in occam and these refer to a special class of process,
namely that of a value process. The syntax for the function is

value.process valof
valof = VALOF
process
RESULT expression.list
“specification
valof
(value.process
)
{(value.process
) .
definition = {1, primitive type} FUNCTION name ({0, formall})
function.body

operand

It

expression.list

function.body = value.process
operand name ({0, expression})
expression.list = name ({0, expression})

i
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definition = {1,primitive.type} FUNCTION name ({0, formal}) IS

expression.list

. A value process consists of zero or more specifications which precede the
keyword VALOF, and this is followed by a process which is indented by two
spaces and the keyword RESULT which is at the same level of indentation as
the process. The keyword RESULT is itself followed by an expression list
which follows the keyword and is on the same line as the keyword RESULT;
the expression list itself can be broken after a comma or at another valid
point in the expression, as discussed earlier in the general context of con-
tinnation lines. An operand of an expression may consist of a left paren-
thesis, a value process followed by a right parenthesis. The structured
parentheses which are equivalent to the left-hand and right-hand paren-
theses of a bracketed expression appear at the same level of indentation as
each other. Therefore where the value process produces a single result, the
upper bracket may be preceded by an operator, or the lower bracket may be
followed by an operator. The heading of a function definition consists of the
keyword FUNCTION which is preceded by the type (or types) of the result
(or results) of the function. The name of the function and a formal para-
meter list enclosed by parentheses follows, on the same line, the keyword
FUNCTION. The value process which forms the body of the function
follows on the next line with an indentation of two spaces. The function
definition is finally terminated with a colon which is on a new line at the
same level of indentation as the start of the definition itself. As an alternative
definition to that just described, a function definition may consist of the
function heading as before followed by the keyword IS, an expression list,
and a colon, on the same line. As discussed elsewhere, the line may be
broken provided this is done after the keyword IS, a comma or another valid
point in the expression. Finally, where a function is defined to have zero
parameters it must be followed by empty parentheses; and where a number
of parameters of the same type appear in the parameter list then a single
specifier may be used to specify several names.

The named value process which is specified by the function produces a
result which is of primitive data type, and notably not of array type, and the
result may appear in expressions. Value processes may produce more than
one result which may be assigned in a multiple assignment statement.

It is useful to bear in mind that the VALOF expression can be used in an
occam program to return a value — it is not restricted to being used in
functions. For example, it would be quite valid to write in an occam program

[10IREAL32 A:

i := REAL32 tmp:
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VALOF
SEQ
tmp := REAL32 0.0
SEQ ix = 0 FOR SIZE A
tmp := tmp + A[ix]
RESULT tmp

There are a number of restrictions on the kind of expression that can
appear in the context of a VALOF: .

@ variables that are assigned to must be declared immediately prior to
the VALOF, or within the body of the VALOF ’

e there must be no PAR constructs

e there must be no ALT constructs

® there must be no channel operations

Like procedures, functions are often used to ‘mark off sections of occam
code which are going to be used frequently. However, unlike a procedure, a
function returns a value, or a number of values, rather than having an effect
on the environment of the process. For example, a function to calculate the
average value in an array of values could be written as follows:

REAT32 FUNCTION average (VAL []REAL32 values)

REAL32 sum:
VALOF
SEQ
sum := REAL32 0.0
SEQ ix = 0 FOR SIZE values
sum := sum + values [ix]
RESULT sum/ (REAL32 ROUND SIZE values)

We can also make use of multiple assignments in occam to write functions
like the following:

REAT,32, REAL32 FUNCTION average.and.max (VAL []JREAL32 values)

REAL32Z sum,max:
VALOF
SEQ
sum := REAL32 0.0
max := values([0]
SEQ ix = 0 FOR SIZE values
sum := sum + values[ix]
Ir
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values[ix] > max
max := values[ix]
TRUE -
SKIP
RESULT sum/ (REAL32 ROUND SIZE values), max

Whilst in this example the assignments have been made to two values of the
same data type, namely that of REAL32, assignments can be made to
different data types. In this case the assignments are made to values for
average and maximum.



Appendix A Syntax summary

The syntax of occam 2 is summarised in this appendix using BNF (Backus-
Naur Form) notation. '

A.l Processes

process = SKIP | STOP | action | construction
SKIP starts a process, performs no action and terminates

STOP starts a process but never proceeds and never

terminates.
action ='assig'nment | input | output
assignment = variable := expression
input = channel ? variable
output = channel ! expression
assignment = variable.list := expression.list
variable.list = {1,variable}
expression.list = {1,expression}
A2 Constructs
construction = sequence | parallel | conditional |
loop | alternation | selection
sequence = SEQ
{process}
parallel = PAR
{process}

89
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conditional = TF
{choice}
choice = guarded.choice | conditional
guarded.choice = boolean v
process
boolean = expression
loop = WHILE boolean
process
alternation = ALT
{alternative}
alternative = guarded.alternative | alternation

guarded.alternative = guard

process
guard = input | boolean & input | boolean & SKIP
selection = CASE selector

{option}
option ; = {1,case.expression}

process

] ELSE
process

selector = expression
case.expression = expression
A.3 Replicators
sequence - = SEQ replicator

process
parallel = PAR replicator

process
conditional = IF replicator

choice
alternation = ALT replicator

alternative
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A.6 Declaration

declaration

A.7 Protocol
definition
simple.protocol

input

input.item

output

output .item

variable

protocol

sequential.protocol

input
output

definition

tagged.protocol

tag
output

case.input

channel

variant

typel{l, nare} :

PROTOCOL name IS simple.protocol :

PROTOCOL name IS sequential.protocol :

type
primitive.type :: [ltype

.channel ? input.item

variable
variable :: variable

channel ! output.item

variable
expression :: expression

element

simple.protocol
{1;simple protocol}
chamnel ? {1;input.item}
channel ! {1;output.item}

PROTOCOL name
CASE
{tagged.protocol}

tag
tag;sequential.protocol

name

channel ! tag
channel ! tag; {1;output.item)

channel ? CASE
{variant}

element

tagged.list



tagged.list

process

input

A.8 Timer

primitive.type

input

timer input
delayed input
timer

A.9 Expression
expression

operand

element

subscript
table

expression
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process
specification
variant ‘

-tag

tag; {1;input. item}
case.input

channel ? CASE tagged.list

TIMER

tirer input
delayed input

timer ? variable
timer ? AFTER expression

element

monadic.operator operand
operand dyadic.operator operand
conversion

operand

element
literal
table
(expression)

element [subscript]
[element FROM subscript FOR subscript]
name : ‘

expression

table [subscript]
[{1,expression}]
[table FROM subscript FOR count]

MOSTPOS type
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conversion

A.10 Abbreviation

abbreviation

specifier

A.11 Scope

process
choice
option
alternative
variant
valof

specification

| MOSTNEG type

= primitive operand
| primitive.type ROUND operand
| primitive.type TRUNC operand

= gpecifier name IS element:
| name IS element :

| VAL specifier name IS expression:
| VAL name IS expression:

= primitive.type
| [lspecifier
| [expression]specifier

= gpecification
process

= specification
choice

= specification
option

= specification
alternative

= specification
variant

specification
valof

= declaration
| abbreviation
| definition




A.12 Procedures

definition

formal

procedure .body
instance

actual

A.13 Functions

value.process

valof

operand

expression.list

definition

function.body
operand
expression.list

definition
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PROC name ({0, formal})
procedure .body

specifier{l,name}
VAL specifier{l,name}

process
nane({O,actual})

element
expression -

valof

VALCOF

process

.RESULT expression.list
specification
valof

(value.process

)

(value.process

)

{1, primitive type} FUNCTION name
({0, formal})
function.body

value.process
name ({0, expression})
name ({0, expression})

{1,primitive.type} FUNCTION name
({0, formal}) IS expression.list :
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A.14 Configuration
parallel = PLACED PAR.
{placement}
| PLACED PAR replicator
placement
placement = PROCESSOR expression
process
parallel = PRT PAR
{process}
| PRI PAR replicator
process
alternation = PRT ALT
{alternative}
| PRI ALT replicator
alternative
process = allocation
allocation = PLACE name AT expression:
definition = specifier name RETYPES element:
| VAL specifier name RETYPES expression:
primitive.type = PORT OF type
input = port ? variable
output = port ! expression
port : = element

ANY

protocol
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Appendix C Keywords in occam 2

AFTER later than operator

ALT alternation construct

AND boolean operator AND
ANY anarchic protocol

AT at location

BITAND Dbitwise operator AND
BITNOT bitwise operator NOT
BITOR Dbitwise operator OR
BOOL boolean type

BYTE byte type

CASE case input, sclection construct, variant protocol
CHAN OF channel type

ELSE default option selector
FALSE boolean value

FOR count

FROM base value

FUNCTION function definition
IF conditional construct

IS specification introduction
INT integer type

INT16 16-bit integer type

INT32 32-bit integer type

INT64 64-bit integer type
MINUS modulo subtraction operator, negative operator
MOSTNEG most negative integer
MOSTPOS most positive integer
NOT boolean operator NOT
OR boolean operator OR

PAR parallel construct

PLACE allocation

PLACED placed processes
PLUS modulo addition operator
PORT OF port type

98
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PRI priority construct

PROC procedure definition
PROCESSOR processor allocation
PROTOCOL protocol definition
REAL32 32-bit real type
REAL64 64-bit real type

REM remainder operator
RESULT value process result
RETYPES retyping conversion
ROUND rounding operator
SEQ sequence construct

SIZE array size operator

SKIP skip process

STOP stop process

TIMER timer type

TIMES modulo multiplication operator
TRUE boolean value

TRUNC truncation operator
VAL value

VALOF value process

WHILE loop construct
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