

£
e
™~
;Q"“"\\
~
N
’C}

All rights reserved. No part of this publication may be reproduced or transmitted
in any form or by any means, electronic or mechanical, including photocopying,
recording, or any information storage and retrieval system, without permission in
writing from the publisher.

© K. C.Bowler, R. D. Kenway, G. S. Pawley, D. Roweth and Chartwell-Bratt, 1987

Chartwell-Bratt (Publishing and Training) Ltd 3
ISBN 0-86238-137-1

Printed in Sweden
Studentlitteratur, Lund

AREN

91-44-27151-4 123 45 6 7 8 9 1011991 90 89 88 87

TEMPLEMAN'
LIBRARY

L

Lyvesss

Preface

This introduction to occam 2 was originally produced as a detailed set of
lecture notes for an intensive course, giving practical hands-on experience inan
emerging computer technology. As there is a real need for a publication in this
field we have made some minor modifications to the notes to satisfy a wider
readership. Although the occam language is still in development we have chosen
to present only that part of the putative language that is actually implemented on
our hardware, fully aware that later additions will be necessary. Our aim has
therefore been to produce a low-cost booklet for practical use. There are other
publications concerning occam 2, notably that by Pountain, and these undoubtedly
will contain the language constructs which are most likely to be included in future
language definitions.

The hardware on which all the examples have been tested is the Meiko
Computing Surface (CS), our version having 42 INMOS T414 transputers. This has
been supported by the Department of Trade and Industry and the Computer Board,
and was delivered in April 1986. Considerable progress has been made during the
last year by our Theory and Computational Physics Group at Edinburgh, but it was
thought not appropriate to include much of this which is specific to the CS.
Nevertheless we have included a number of details of the Computing Surface.

Our lecture notes are understandably not in the usual format because occam is
not yet a language with a long history. It should be easy to read through the first
chapter and get an overall view of the language, but then some further help is
needed to use this information in practice. The final, summary chapter, is
designed for practical usage, giving cross-references to the other chapters
whenever fuller details are required. This chapter contains a statement of the’
constructs of occam 2, but it also includes some of the necessary information
about OPS, the occam operating system, for otherwise it would not be a full
working tool.)

The second chapter gives some simple programs ideal for the beginner, and
there is the added advantage that it is possible to implement these programs on
an IBM PC (with a B004 board). Chapter 3 follows with a specific case study,
showing how to use a number of processors on one problem. This is then
followed by a chapter on the use of parallel algorithms; many problems have to be
rethought in order to exploit the enormous possible gains that massive paralielism
offers.

A chapter surveying some of the various parallel computers is intended to put
the transputer and the Computing Surface in perspective. This leads on to a more
thorough chapter on the Computing Surface itself, and although there are some
details which are specific to our own version of the computer, the reader should
get a good indication of the versatility of this MIMD computer.

The history of the development of the scientific computer owes much to the
seemingly unreasonable demands of the physicist, but we do have a shrewd idea
as to where the physical limitations on computer technology lie. To get yet
another factor of a thousand it is clear to us that massive parallelism is the only.

way. We have been delighted to be able to discuss these matters with the
designers in Meiko, and are especially indebted to Miles Chesney.

The last few years has been a very exciting time for us in Edinburgh. We
started work on the ICL DAP in 1980, and this led to our acquisition of two DAPs, a
growth of our commitment to large scale computation and a deepening of our
understanding of the issues of parallelism. In all of this work, and in our future
hopes, Professor David Wallace FRS has played a major and energetic role, for
which we are all profoundly grateful. For my part | would like to take this
opportunity to thank all my colleagues for such genuiné and fruitful collaboration,
especially to the other authors of this book who did by 'faﬁ the major part of the
work. ' " o

Stuart Pawley
Professor of Computational Physics
Department of Physics

University of Edinburgh

April, 1887

Contents

1. Introduction to Occam 2

0@

10.
. More on replicators

12.

13.

14.

15.

16.

Some basic ideas
Primitive processes

2.1 Assignment process
2.2 Input process

2.3 Output process

2.4 SKIP and STOP
Constructs

3.1 SEQ

3.2 Replicated SEQ

3.3 Naming a process
3.4 Scope

3.5 WHILE

3.6 PAR

3.7 Replicated PAR

Types & specification

4.1 Names :

4.2 Data types

4.3 Channels

4.4 Constants

4.5 Initialisation
Operators

5.1 Arithmetic operators
5.2 Modulo arithmetic operators
5.3 Boolean operators
5.4 Bit operators

More on constructs

61 IF

6.2 ALT

A longer example

Abbreviations

Arrays

9.1 Array types

9.2 Array segments
More ahout abbreviations

11.1 Replicated IF
11.2 Replicated ALT
Priority

12.1 PRI ALT

12.2 PRI PAR

More on procedures
13.1 Scope

13.2 Parameters

13.3 Passing conventions
Retyping

14.1 Type conversion
14.2 RETYPES
Miscellany

15.1 Tables

15.2 Continuations
Postscript

=Y

OO NNNOOU™BEROWWWNNONNN=

2. Implementation of simple programs

1. Transputer Hardware
2. Configuration
2.1 IBM PC + B004 Board
2.2 Computing Surface
3. Timers
3.1 Delays
4. Benchmark Programs
4.1 Floating Point Arlthmetlc
4.2 Communications

3. Case Study: Cellular Automata

Introduction

The Process for One Cell

Connecting Processes Together & I/0

Ring Placement

4.1 Use of 10 Transputers

4.2 Use of 40 Transputers

4.3 Two Complete Rings ?)
4.4 The Master Process for the Cellular Automaton

SLp=

4, Parallel Algorithms

-t

Introduction
2. Independent Tasks
2.1 The Task Farm
2.2 Ray Tracing
2.3 The Mandelbrot Set
3. Geometric Parallelism
3.1 Introduction
3.2 Cellular Automata
3.3 Partial Differential Equations
4. Algorithmic Parallelism
4.1 The General Situation
4.2 Long-range Interactions
5. Performance Estimates
6. References

5. Survey of Parallel Architectures

1. Introduction
2. Basic Architectures
2.1 SIMD parallelism
2.2 Hypercube geometry
2.3 MIMD concurrency
24 Local or Global Memory?
3. Some Specific Computers
3.1 SISD - pipeline processors
3.1.1 CRAY X-MP, CRAY-2, CRAY-3
3.1.2 CYBER-205, ETA GF-10
3.1.3 Facom VP, Hitac $-810, NEC SX and MITI s plans

3.2 SIMD - processor arrays
3.2.1 Distributed Array Processor, DAP
3.22 mil-DAP and DAP-3
3.23 Connection Machine
3.2.4 Massively Parallel Processor, MPP
3.2.5 Cellular Logic image Processor, CLIP
3.2.6 Adaptive Array Processor
3.27 The GEC GRID

3.3 MIMD ~ multi-processors
3.3.1 BBN's Butterfly and Monarch
3.3.2 The Heterogeneous Element Processor
3.3.3 The IBM LCAP
3.3.4 The Ultracomputer and the RP3
3.3.5 Myrias 4000
3.3.6 Caltech hypercube
3.3.7 The FPS T-series

3.3.8 Intel's personal supercomputers, iPSC & iPSC-VX

3.3.9 Ametek System 14
3.3.10 NCUBE

3.3.11 Sequent BALANCE and Alliant FX-series

3.4 Data-flow and systolic architectures
3.5 Transputer-based systems
3.5.1 INMOS Transputer Evaluation Module
3.5.2 The Esprit Project
353 ALICE
3.5.4 The Meiko Computing Surface

The Computing Surface

The Transputer
The Computing Surface
The Edinburgh Computing Surface
3.1 System Configuration
3.2 The Occam Programming System (OPS)
3.2.1 Files and Folds
3.2.2 Using OPS on the microVAX
3.3.3 Using the Computing Surface
Utility Packages
4.1 The Program Development Package
The Transputer Development System Utilities
System Code
Elementary Function Library
Input Output Procedures
8.1 Output
8.2 Input

Ladi Sl

>

PN m

Notes on occam 2

1. Reserved Strings
2. Glyphs
3. More details about reserved strings and glyphs

INDEX

1. Introduction to Occam 2

[1]1 1. Some basic ideas

This chapter will provide an elementary introduction to concurrent
programming using the occam language, which was developed by C. Hoare of
Oxford University and D. May of INMOS Ltd. Although occam may be used on
conventional computers, it has a special relationship with the INMOS Transputer, a
high-performance VLS| microprocessor which was designed with on-chip
communications to facilitate the constructicn of parallel processing systems of
arbitrary size. Occam may be thought of as the assembly language of the
transputer, although it can be regarded as a language in its own right.

Occam is based on the process model of computing. A process is an
independent computation with its own program and data, which can communicate
with other processes which are executing at the same time. A process can be
thought of as a black box with inputs and outputs, that can communicate by
message passing using explicitly defined channels. Processes can be connected
together by such channels to build more complex concurrent systems. Each
channel provides a one-way connection between two concurrent processes.
Communication is synchronised; if a given channe! is used for input in one process
and output in a second process, communication takes place only when both
processes are ready. . .

- T

Fig. 1. (a) A process (b) Processes connected together by channels

Occam enables a system to be described as a collection of concurrent
processes which communicate with each other through channels. An occam
program may be executed by an array of transputers. However, it is important to
realise that the same program may be executed almost unchanged on a smaller
array, or even on a single transputer. An occam channel describes .communication
in the abstract and doés not depend upon a particular hardware implementation.
Thus an occam program which uses channels may be written and tested without
deciding where particular processes will be executed.

[1] 2. Primitive processes

Occam programs are constructed from a small number of simple building
blocks called primitive processes which we will now describe.

[1] 2.1 Assignment process
An assignment process simply changes the value of a variable, in just the
same way as in most other programming languages. The special symbol
‘used for assignment in occam is := Thus for example

var := 6

assigns the value 6 to the variable var. The value' assigned to a vanable
could be an expression, which may contain other variables:

var := 6 + var?

Note that = and := are not the same. In occam = means a test for equality,
not an assignment.

[1] 2.2 input process

An input process inputs a value from a channel into. a variable. The symbol
for input in occam is ?. For example,

'chanl xvar
sets the variable Xvar to the value input from the channel chanl.

Input processes can only input values to variables, not to constants or to
expressions. An input process will wait until a correspondmg output process
on the same channel is ready.

[1] 2.3 Output process

An output process outputs a- value to a channel. The symbol for output in
occam is !. Thus, .

chanz yvar

outputs the value of the variable yvar to the channel chan2. An output
process cannot proceed until a corresponding input process on the same
channel is ready.

Communication is thus synchronised; at any time a process may be ready
and waiting to commiunicate on one or more of its channels. When both an
input and an output process are ready to communicate on the same channel,
the value to be output is copied from the output process to the input
process.

[1] 2.4 SKIP and STOP
Occam ‘also has two special processes called SKIP and STOP. SKIP is a

process which starts, does nothing and then finishes. This may seem
bizarre, but we will see later that there are instances where the syntax of

occam requires a process to be present even though nothing is required to
happen. It might also be used in a partially completed program to represent
a process which has still to be written.

STOP is a process which starts but never proceeds or finishes 1 It can be
thought of as representing a process which doesn’t work. For example, it
could be used instead of a process for handling. errors, when a program is
-under development. : .

We should be more careful about what is meant by finishing. A process
which completes all its actions is said to terminate. Normally a process
starts, proceeds and terminates. A process which ‘starts but cannot proceed
is said to be stopped. .A stopped process never terminates. For example, 2
process might be waiting for an input which will never happen because of a
programming error; such a process’ is said to be deadlocked, the curse of
concurrent programming !

[1] 3. Constructs

Constructs are used to combine primitive processes into- larger processes
which may, in their turn, be combined into larger processes still. .Constructs start
with an occam keyword which states how the component processes are to be
combined. .

[11 3.1 SEQ

The sequential construct SEQ causes the component processes to be
executed one after another, terminating when the last component terminates.
For example
SEQ
chanl ? varl
var2 := varl + 1
chan2 ! var2

which inputs from chanl to varl, assigns varl + 1 to var2 and outputs
var? to chan?. Thus we see that a SEQ process is just like a program in
more conventional- programming languages, terminating when the last
component process terminates. Note that the component processes which
make up. the SEQ are all indented with respect to the word SEQ by two
characters, which is how occam knows which processes are part of the SEQ
construct. Note also that SEQ is compulsory in occam whenever two or
more processes are to run in sequence, unlike more conventional languages,
where the sequential execution of consecutive statements is usually taken
for granted. : :

{1132 Replicafed SEQ

Occam allows us to create replicas of processes using a replicator index akin
to an array index. We shall postpone discussion of arrays until later, but
here is an example of a replicated SEQ: ‘

INT var :
SEQ index = 0 FOR 5
channel.out ! var + index

f11

-1

The effect of this is equivalent to writing -

INT var :

SEGQ
channet.out ! var
channel.out ! var + 1
channel.out ! var + 2
channel.out ! var + 3
channel.out ! var + 4

that is, we create 5 replicas. of the input process and execute them in
sequence. Another new feature is the declaration of the variable var to be
of type INT, that is, integer. We will specify the types in occam a little later.
The general form of a replicated SEQ is ’

SEQ index = base FOR count
process

Individual processes in a replicated construct can be referred to using the
replicator index. Examples will be given very shortly. Note that if countis
zero, the replicated SEQ will act like SKIP,

3.3 Naming a process

At this point it is useful to point out that a process may be named by means
of the keyword PROC and a name, followed by the body of the process or
procedure. PROC takes zero or more formal parameters, which will be
described later. For example .

PROC add.one (CHAN chanl,chan2)
INT varl, var2 :
SEQ
chanl ? varl
var2 := varl + 1
chan2 ! var2

-
-

Here we have packaged up the previous example code into a procedure

named add.one which takes the names of the two channels chanl and chan?
as parameters. The procedure is terminated by the : on a line by itself at
the same level of indentation as the PROC keyword. :

3.4 Scope

In occam, variables, channels and other named objects are local to the
process which immediately follows their specification. Declarations, like INT,

“introduce variables for the process that follows at the same level of

{11

indentation. Indentation defines the scope of a construct.
3.5 WHILE

We may wish to have a process executed repeatedly, until some condition is
satisfied. One way to achieve this is to use

WHILE expression

buffer.in buffer, out

Fig. 3: A two-stage buffer

Here it is important to note that the written order of the component
processes is irrelevant, as they are performed concurrently. Each process
awaits input on a channel and, upon receipt, outputs a value. In this

example the concurrent processes communicate using the channel comms. In.

general note the following:

. concurrent processes may only communicate using channels
. processes within a PAR construct must be independent

. each concurrent process operates on its own variables

. communication is synchronised.

. only two component processes of a PAR may use any particular
channel, one as sender and the other as receiver.

Here is a second example, admittedly artificial, which does some arithmetic
on the input values before passing them on:

CHAN comms :
PAR
INT varl :
SEQ
channel.in ? varl
comms ! varl*varl
INT var? :
SEQ
comms ? var2
channel.out ! var2z + 1

We have here assumed that the channels channel.in and channel. out have
been defined elsewhere in the program. Of course it would be much snmpler
in this instance to perform the square and add in a single SEQ process or in
a single expression, but in more complicated applications, such as the
construction of an arithmetic pipeline, this kind of construct is very useful.

{11 3.7 Replicated PAR

As for the SEQ construct, PAR may be replicated to build an array of para"el
processes, any of which can be referred to by the replicator index. The
general form is

PAR index = base FOR count
process

e

As an example, we consider the ‘bucket brigade’ or pipeline, in which data is
passed from one process to another in a chain, using an array, or vector of
channels, which is declared in the first line. We will discuss arrays in detail
at a later point, but the minimal use made here should be self-explanatory:

[LO]JCHAN Tink :
PAR bucket = 0 FOR 9

WHILE TRUE
INT water :
SEQ . T
Tink[bucket] ? water .
Tink[bucket+1] ! water

The replicator sets up 9 parallel processes, each of which continually
transfers values between one node in the pipeline and its neighbour. Of
course this example is not self-contained, because as it stands, the first
‘bucket’ has nowhere to input its ‘water’ from, nor has the final process
anywhere to output its ‘water’ to. However, we can imagine embedding this
code in a larger program which supplies data to 1ink[0] and extracts data
from T1ink[9].

[1] 4. Types & specifications

Unlike the first version of occam, described in the Occam Programming Manual,
published by Prentice Hall International in 1984, occam 2 requires that objects used
by a program should have a type, which must be specified before using that object
in a process. We have also been a little cavalier with names for variables and
channels in the examples given so far, so let.us now be more precise.

[1] 4.1 Names
Names must begin with a letter of the alphabet, may.incﬁ_{u__,de letters, digits
and the dot character and can be of any length. Upper and lower case are
treated as distinct by occam. Occam keywords such as SEQ, PAR, CHAN and
PROC are always in upper case and are reserved. Examples of valid names
are: o

X X var varl VarOne var.one very.long.name.for.variable
[1] 4.2 Data types

The types which are available for variables in occam are:

INT -~ an integer .)

BYTE . -- an integer restricted to the range 0 to 255
-- can be used to represent characters

BOOL -~ logical; either TRUE or FALSE

In addition to these generally available types, some implementations of
occam permit some or all of the following types:

INT16 -- 16 bit integer

INT32 -~ 32 bit integer
INT64 -~ 64 bit integer
REAL32 -- 32 bit real
REAL64 -- 64 bit real

Note the use of occam comments, preceded by --

[1] 4.3 Channels

Occam channels are all of the type CHAN in the current reléase of occam2,
although this may change in future versions.

[1] 4.4 Constants

In occam a name may be given to a constant value by using the
specification

VAL type name 1S value :
so it is possible to write, for example
VAL INT hours IS 24, minutes IS 60 :

The type is normally omitted when it is obvious from the value. Possible
ambiguities over BYTE and INT, or REAL32 and REAL64 are resolved by
explicitly specifying the type of the value. Examples:

VAL empty IS O (BYTE) :

VAL pi IS 3.14159 (REAL32) :
The first of these is equivalent to

VAL BYTE empty IS 0 :

The colon which ends a specification effectively joins that specification to
the process which follows it, an idea which is emphasised by indenting the
specifications to the same level as the process, as we noted earlier in our
brief discussion of scope. Thus the scope of a specification is restricted to
the following process. This is illustrated by the squarer/adder example which
we discussed under PAR. The variables varl and var? are !ocal to their
respective SEQ processes.

[1] 4.5 Initialisation

In occam the value of a variable is unassigned until it has either input a
value or has been assigned a value. Furthermore, the value of a variable has
meaning only during the execution of the process for which it has been
declared. Once the process has terminated the variable no longer has a
well-defined value. If the process is to execute again it is important that the
variable has again been assigned a value. If one wants a variable to keep its
value from one execution of a process to another, it can be declared in an
outer scope, that is, before a process which contains the process which is to
be executed repeatedly.

[11s.

Operators

So far we have not specified the arithmetic and logical operators which are
available in occam. Let us now be more precise,

11

[11

5.1 Arithmetic operators
The elementary arithmetic operations in occam are as follows:

-~ add b to a

-~ subtract b from.a

-- multiply abyb

divide a by b

b -~ remainder when a is divided by b
-- alternative form of REM

aR R R

P N
ocITooToT
1
I

In occam there is no priority (precedence) for arithmetic operators so that
brackets must be used to remove all ambiguities. For example:

(2+3)*(4+5) -~ result is 45
2+(3%(4+5)) -~ result is 29
(2+(3%4))+5 - -- result is 19
243*4+5 -- i1legal
(2+(3*4)+5) -~ illegal

5.2 Modulo arithmetic operators

For integers only, a further set of operators is provided which permits
modulo arithmetic. The modulo operators PLUS, MINUS and TIMES permit
addition, subtraction and multiplication modulo N/2 where N = 2 to the power
n, with n the number of bits in an INT), in unchecked 2's complement
arithmetic. In general .

(i PLUS j) is (i+]) + (K*N)
where k is the unique integer for which

(i+3) + (K*N) >= ~(N/2) and (i+]) + (K*N) < (N/2)
Similarly '

(i MINUS 3) is (i-3) + (K*N)
(i TIMES j) is (i*3) + (k*N)

As a simple, rather artificial example, consider the case of 3 bit INT modulo
arithmetic, where Nis 8

(3 PLUS 3) is 6 + k*N, with k = -1 and hence yields -2

11

1]

5.3 Boolean operators

A boolean values is produced as the result of a test performed by .a
comparison operator. The following operators are available in occam:

= © . -- equal to

<> -- not equal to

> -- greater than

< -- less than

>= -- greater than or equal to
<= -~ less than or equal to

Note that again brackets are needed to remove ambiguities whenever more
complicated tests are made by combining two or more comparisons.

Occam also provides the boolean constants TRUE and FALSE.which may be
used anywhere that a test could be used. We have already seen an example.

Occam provides the standard boolean operators AND, OR and NOT, which are
defined by

NOT TRUE = FALSE NOT FALSE = TRUE

TRUE AND log = log FALSE AND Tog = FALSE

TRUE OR log = TRUE FALSE. OR log = log
where log is either TRUE or FALSE.

5.4 Bit operators

“'More sophisticated applications than those we have discussed so far may

require operations on individual bits in a word. Occam provides the
following bit operators: L .

N\ -- bitwise and
\/ . -~ bitwise or
>< -- bitwise exclusive or

-- bitwise not
<< -- left shift
>> -~ right shift

10

i

[1] 6. More on constructs
(1161 IF

Occam provides a form of conditional choice by means of the construct IF,
which takes any number of processes, each preceded by a test,’and builds
from them a single process. The conditions‘_are-t‘ested sequentially and the
first one which is TRUE is executed. Note that orily that process is executed.
As an example, consider EE ’

IF
var = 1
chanl ! x
cvar = 2
chan2 1 x
var = 3
chan3 ! x

The effect of this piece of code is to output the value of the variable X on
chanl, chan2 or chan3 depending on whether the value of varis 1, 2 or 3.
Note that if the value of var is anything other than 1, 2 or 3 the effect of
- this IF process is equivalent to STOP. The program can only proceed if one
of the choices is executed. One way of avoiding this difficulty is as follows;

IF
var = 1
chanl ! x
var = 2
chan2 ! x
var = 3
chan3 1 x
TRUE
SKIP

We see that if var fails the first three tests, it is boind to satisfy the fourth,
namely TRUE, and hence the program can proceed via the SKIP process. -

More complicated tests can be performed by nesting IF's:

If the value of var is 2 the effect of this code fragment is to output the
value of X on chan3 if X has any value other than 6.

11

[11 6.2 ALT

Whereas the IF construct enables us to choose different processes
according to the values of variables in the program, the alternative construct,
ALT, allows us to make choices which depend on the state of channels. The
component parts of ALT, called alternatives, are combined by ALT into a
single construct, but in ways which can be difficult to grasp at first, The
simplest kind of ALT is where each alternative consists of an input process
followed by an executable process of some sort. Thus

CHAN chanl, chan2, chan3 :
INT var :
ALT
chanl ? var
process 1
chan2 ? var
process 2
chan3 ? var
process 3

The ALT watches all the input processes, known as guards, and executes the
process associated with the first input to become ready. We can think of the
ALT construct as a first~past-the-post race between a set of channels, with
only the winner's process being executed.

As a second example we consider again the simple buffer. ALT may be used
to provide for an interrupt .

BOOL running :
SEQ
running := TRUE
WHILE running
INT xvar, any :
ALT
buffer.in ? xvar
buffer.out ! xvar
interrupt ? any
running := FALSE

buffer.in buffer.out

interrupt

Fig. 4: A simple buffer with interrupt

12

T

Here the channe! interrupt permits the termination of the continuous WHILE
loop. '

in general note the following features:

. each component process has a guard which is an input, with an optional
" condition. Permissible guards are: : .

channel ? variable
(boolean) & channel ? variable
SKIP

. a process which is guarded by an input is not executed unless the process
at the other end of the channel is ready to output.

. the earliest process which is ready to be executed is chosen. The guard
is executed, followed by the guarded process.

. if several alternative guards are ready, an arbitrary one is chosen,
. a process guarded by SKIP is always ready.

Here is an example of ALT with a test in addition to an input as guard:

CHAN chanl, chan2, chan3 :
INT any :
ALT
(ext.var < 0) & chanl ? any
process]
(ext.var = 0) & chan2 ? any
process2
(ext.var > 0) & chan3 ? any
process3

As with the IF construct, ALT may be nested inside an outer ALT.

[1]1 7. A longer example

We now illustrate the use of these more difficult constructs with a longer and
somewhat more complex example. Suppose that we want to write a program to
control a heating system via two digital press—buttons labelled warmer and cooler.
Pressing warmer increases the heat output by one unit whereas pressing cooler
decreases the output by one unit.

Suppose that we have two occam channels called warmer and cooler which
produce an input whenever the appropriate button on the control panel is pressed,
and a third channel called heater whose function is to transmit a value to the
regulator mechanism on the heat source.

Without worrying about declarations at this stage, we “first construct simple
processes to increase or decrease the heat produced:

13

SEQ
heat := heat + 1
heater ! heat

and

SEQ
heat := heat - 1
heater ! heat

The program can poll the two channels warmer and cooler to determine which
button has been pressed by making use of the ALT construct: o

INT heat, any :
SEQ
heat := 0
heater ! heat
WHILE TRUE ,
ALT
warmer ? any
SEQ
heat := heat + 1
heater ! heat
cooler ? any
SEQ
heat := heat - 1
heater ! heat

The use of WHILE TRUE means that the control panel buttons are interrogated
repeatedly and the process never terminates. We can ensure that the program
terminates in a sensible fashion by adding an extra channel to communicate the
status of the OFF button on the control panel to the program, and by replacing the
boolean.constant TRUE by a boolean variable which represents the ON/OFF status:

BOOL running :
INT heat, any :.

SEQ
running := TRUE
heat := 0

heater ! heat
WHILE running
ALT
warmer ? any
SEQ
heat := heat + 1
heater ! heat
cooler ? any
SEQ
heat := heat - 1
heater ! heat
off ? any
running := FALSF

14

We might also wish to limit the values which are transmitted to the heater to
some fixed range which corresponds with the physical limitations on the minimum
and maximum heat output of the device. Let us suppose that these values are 0
and 10 respectively. We declare these minimum and maximum values at the
beginning of the program using named constants so that if we ever need to revise
the values, when, for instance a new model of the heater is installed, we need only
change the values in a single place in the program. -

VAL min.heat IS O, max.heat IS 10 :
BOOL running : o .
INT heat, any : .
. SEQ
running := TRUE
heat := min.heat
heater ! heat
WHILE running)
ALT
(heat < max.heat) & warmer ? any
SEQ
heat := heat + 1
heater ! heat
(heat > min.heat) & cooler ? any
SEQ :
heat := heat - 1
heater ! heat
off ? any
running := FALSE

Note that the channels heater, warmer, cooler and off have not been declared in
the program because they connect to pieces of hardware, rather than to other
occam processes.

[1] 8. Abbreviations

One of the most powerful and useful features’ of occam is the.abbreviation.
Abbreviations may be used to give a name to any expression in occam. We have
already seen an example when we discussed named constants, -employing VAL
Here is an expression abbreviation .

VAL seconds IS 60*((60%hours)+mins) :
which defines seconds to be shorthand for the value of the expression on the
right. The scope of the abbreviation is the process which follows it, to which it is
attached by the terminating colon, as usual.
if an ébbreviation, such. as this éxample, contajris ‘variables on its right hand side,

then in general those variables should remain constant throughout its scope. The
full form of an expression abbreviation contains a type specifier before the name

VAL INT name IS expression‘:
but as before, the type can be omiited, leaving occam to deduce the‘ type from the

type of the right hand side. Occam assumes that integers less: than 256 are of
“type INT unless otherwise instructed, which can be done:

15

VAL soh IS 1 (BYTE) :

In the next section we shall see how abbreviations can be used to name arrays
and parts of arrays.

[1] 9. Arrays

. Unlike earlier versions of occam, occam 2 supports multidimensional arrays.
Quite generally, an array is a set of elements of the same type. An array may
have one or more subscripts; the number of subscripts is referred to as the
dimension of the array. An element of an array is specified by giving the value of
each of the arrray subscripts, and is usually known as a component of the array.

[1] 9.1 Array types

Array variables in occam are declared in the same way as single variables
of any type, but with the number of components in each dimension prefixing
the type declaration. Examples are:

[4] INT vector : -- a vector of 4 -integers

[8]18] BYTE chessboard : -—- 3 2 dimensional byte array
5

[51[5]1[5] INT cube.sites : -~ a 3 dimensional integer array
[6]REAL32 values : -- a vector of 6 reals
[3]CHAN ttyMux -- a vector of 3 channels

An array can be referenced by name in order to transmit it to another
process, for example.

PAR
comms ! chesshoard
other processes
comms ? chequer

sends the entire array chessboard to another process, provided that chequer
has also been declared to be of type [8][8]BYTE.

Note that the sizes of arrays in occam must be fixed " at ‘compile time and
cannot be assigned or altered during execution, v

The convention for referring to particular components of arrays in occam is
to specify the array name followed by a suffix or suffices giving the
particular values of the array subscripts in brackets. For example

vector[0] -~ the first element of vector
chessboard[0][1] -- the white knight's square!
ttyMux[1] ’ ‘ -~ the sécond channel’

16

A segment can itself be treated as an array. Thus defining the array [20]INT
store we may treat the segment S

[store FROM 8 FOR 6]

as an array of 6 components, starting with store[8] and 'ending with
store[13].

Array segments can be input, output or assigned to. in the safne manner as
arrays, provided always that the expression which is assigned is an array of
the same type and size as the segment. For example

[store FROM 10 FOR 5] := [store FROM O FOR 5]

[store FROM 10 FOR 5] := cache

where cache has been declared as [5]INT.

[1] 10. More about abbreviations

We have already met the use of abbreviations for constants and constant
expressions. The description of array segments can be much simplified by
using abbreviations. For example

st IS [store FROM 10 FOR 5] :

enables us to consider st to be an array of size 5, with subscripts running
from 0 to 4, where, for example, st[1] is identified with store[11] and so
on. .

An important point to note here is that VAL is not used; we are not merely
naming a value. The abbreviation may thus be used instead of the full name
of the object when we wish to change ‘the wvalue of that object by
assignment or by input. We could write the previous example more
succinctly as

st := cache
Note that it is not legal, when using an abbreviation for an array component
or segment, to change which component or components are referred to. For
example, if we declare an abbreviation

pocket IS store[i] :

we should not change the value of the subscript 1 within the scope of
pocket.

Abbreviations may also reward the programmer with performance benefits,
as well as improving the conciseness of code. If instead of subscripting an
array, we use an abbreviation for an array component within a loop

- the compiler recognises that the subscripts are constant and so does
not compile run-time range checks

18

EE e S

. the address of the array component becomes local to the loop process
rather than global, and occam processes handle local data faster.

An abbreviation may also be used to set up an array constant:
VAL days IS [1,2,3,4,5,6,7] :
The components of days can be accessed in the usual way, so days[3] is 4

We finish thlS section on arrays with two examples to nllustrate some of the
features just introduced. Here is a procedure which can be ‘used to compute
the mean and variance of a set of data, as that data is accumulated.

PROC time.average ([]REAL32 statistics, REAL32 data)

sample.size IS statistics[0] :
sum.x IS statistics[1] :
sum.x.sq IS statistics[2] :
mean IS statistics[3] :
variance IS statistics[4] :
SEQ
sample.size := sample.size + 1.0(REAL32)
sum.x := sum.x + data
sum.x.sq := sum.x.sq + (data*data)
mean := sum.x/sample.size
variance := (sum.x.sq/sample.size) - (mean*mean)

(3

We see the use of an array as a formal parameter of a procedure, and
abbreviations for array components. Note that in using this.procedure, it
must be ensured that the actual array used when the procedure is called has
been properly initialised. For instance -

VAL zero IS 0.0(REAL32) :
VAL zero.stats IS [zero,zero,zero,zero,zero] :
REAL32 pulse.height :
[S]REAL32 pulse. he1ght stats :
SEQ
-- initialisation
pulse.height.stats := zero.stats
WHILE TRUE
SEQ
—- read event and update statistics
data.chan ? pulse.height
time.average (pu]se height.stats, pulse.height)

In the second example we use a formal parametér which is an arrév of
constants, rather than variables, in a procedure which computes the scalar
product of two fixed vectors:

19

PROC scalar.product (VAL []REAL32 a, b, REAL32 a.b)
SEQ :

a.b := 0.0 (REAL3?)
SEQ i = 0 FOR (SIZE a)
a.b == a.b + (ali]*b[i])

Here a.b is initialised to zero and then used to accumulate the products of
the corresponding components of the vectors a and b.

More on replicators

We saw earlier that replicators could be used with the SEQ and PAR constructs
to useful effect. Now that we are armed with more details of the properties of
arrays in occam we could proceed to construct more complex examples of their
use, but instead we will introduce two more kinds of replicated construct IF and

[1] 11.1 Replicated IF

The general form is

IF index = base FOR count
choice

where choice consists of a condition followed by a process.
Here is a very simple example:

“IF component = 0 FOR 5
storefcomponent] = 0
store[component] :=

whose effect is simply to test the first 5 elements of the array store and to
replace the first one found to be 0 by 1. Note, 'however, that if no 0 is
found, the program will be stopped. The replicated construct does not admit
{sensibly) a concluding TRUE SKIP, and hence the usual use of a replicated
IF involves nesting within an outer IF. For instance

IF
IF component = 0 FOR 5
store[component] = 0
store[component] :=
TRUE
SKIP

1

will now SKIP if no zeroes are found in the array, and the program can
proceed. This construct can be used for searching for the first occurrence of
a given character in a string. If ail such occurrences are needed a replicated
SEQ may be used instead. - : ‘ -

20

[1] 11.2 Replicated ALT

The general form of the replicated ALT is similar to the previous construct:

_ALT jndex = base FOR count
alternative

where a/ternat/ve is a guard followed by a process

The effect is to momtor an array of channels and it may therefore be used to
construct a multiplexer, for example: .

 PROC multiplex (I1CHAN inputs, CHAN output, interrupt)

INT any, signal :
BOOL running :
SEQ
running := TRUE
WHILE running
ALT
ALT i = 0 FOR (SIZE inputs)
inputs[i] ? signal
output ! signal
interrupt ? any
running := FALSE

(X3

inputli] output

input(2]
input{1]
input[0]
interrupt

Fig. 5: A multiplexer

21

[1] 12. Priority

It is sometimes useful, particularly in real-time programming, to be able to
assign priorities to processes in a well-defined way. We saw earlier in the case of
the ALT construct that when the inputs guarding two alternative processes become
ready simultaneously, occam makes an arbitrary choice between the two. Occam
allows us to assign priorities for the ALT and the PAR constructs by preceding the
keyword by PRI. In either case the component processes are assigned a priority
which corresponds to the textual order in which they appear in the program,

[11 12.1 PRI ALT

As already indicated, when two processes become ready simultaneously, the
process with the higher priority will be executed. An example of the use of
this construct is when it is essential to guarantee that a particularly
important channel is examined:

WHILE running
INT any :
PRI ALT
emergency.halt ? any
running := FALSE
TRUE & SKIP
... main cycle

Here the PRI ALT forces the program to check the channel emergency.halt
because of its higher priority. Without the priority, the alternative TRUE &
SKIP, which is always ready, could be taken at every cycle of the WHILE loop.

[1] 12.2 PRI PAR

Assigning priorities to the component processes means that processes with
lower priority can proceed only if no higher priority process is able to
‘proceed. Consider '

PRI PAR
SEQ
chanl.in ? varl
chanl.out ! varl
SEQ
chan2.in ? var?
chan2.out ! var2

where the second SEQ cannot proceed, even when ready, uniess the first is
waiting for its input or output.

As an example, it might be the case that it is more important to relay any
messages to-an external device than to continue computation in a program.
PRI PAR can be used to ensure that computation only proceeds when there
is no message waiting to be input or output:

22

RN

PRI PAR
WHILE TRUE
[message.length]BYTE message @
SEQ
message.in ? message :
SEQ i = 0 FOR message.length
- message.out.! message[i].

<.. main computation . .o -

We have assumed for illustrative purpéses that the external'device“on the
other end of channel message.out requires serving with data one byte at a
. time. '

\ When running.a high priority. process of this kind it.is generally a good rule
to buffer the communications to other processes so that data can be sent
without delay. The size of buffer needed depends in practice on the timings
of the various processes involved. :

PRI PAR
CHAN buffer.chan :
PAR
WHILE TRUE
[message.length]BYTE message :
SEQ ‘
message.in ? message
buffer.chan ! message
WHILE TRUE
[message.length]BYTE message :
SEQ .
buffer.chan ? message
SEQ i =0 FOR message.length
message.out ! message[i]
... main computation

As a general rule, PRI PAR should only be used when it is essential to
impose explicit priority. Since priority does not impinge upon the logical
structure of a program, it is really a configuration issue rather than an occam
programming issue and thus should be left until last, when the overall
program logic has been established and the program works..

[1] 13. More on procedures

We have already seen several examples of procedures and their uses in earlier
sections, but we have not discussed in a systematic ‘way the rules for their use or
the conventions for parameter passing. Let us now remedy this deficiency.

[1] 13.1 Scope

Procedures obey the same scope rules as other occam objects such as
names and variables; the procedure is only known throughout the process
which immediately follows it, to which it is linked by the final :. The body of
the PROC is executed whenever its name is found in that process, such an
occurrence of the name is called an instance of the procedure. Whenever
an instance of the PROC is encountered, it is executed exactly as if the body
of the procedure had been substituted for the name.

23

11

[1]

13.2 Parameters

Earlier examples of PROCs introduced the idea of formal parameters, which
are the means by which different values may be passed to and from the
body of the procedure at different instances. Formal parameters may be of
any type, including, as we have seen, CHAN. When the body of the PROC is
substituted for the instance of the procedure name in a process, the formal
parameter names are replaced by the actual parameters, which may be
values, variables or expressions.

We .are allowed by occam to have any number of formal parameters, which
must’ be separated by commas in the heading of the PROC definition. The
actual parameters of an instance are similarly separated by commas, and
must correspond in number, position and type with the formal parameters of
the PROC. i

13.3 Passing conventions

When we pass a variable as an actual parameter to a procedure in occam,
that variable effectively replaces the formal parameter throughout the
procedure. Anything which the procedure does to the formal parameter is
also done to the variable, which may in consequence have its value changed.
This is in contrast to the call-by-value convention commonly used in other
programming languages in which the actual parameter is used as the initial
value of the formal parameter, which then behaves as a local variable of the
procedure. To give a very simple example, consider the procedure :

PROC double (INT number)
number := 2 * number

When an instance of this procedure is encountered, such as double (n), the
value of n will be twice its previous value when double (n) terminates, so
that caution may be required. For example

INTn, m:
SEQ
n:=1
m:=2
double (n)
m:=m+n

assigns a final value of 4, not 3, to m.

We sometimes require that a procedure should not alter the value of a
variable which has been passed to it as a parameter. One way to achieve
this is of course to assign the value of the parameter to a local variable
within the PROC and to perform any operations on this local copy. If we
need only the original value of a variable in the body of a procedure, that is,
the formal parameter is never altered by assignment or by input, then we
can say explicitly that only the value is to be passed, using VAL.: We .saw an
example of this in the code for the scalar product of two vectors, given
earlier. In this case, the formal parameter can be thought of as a constant
throughout the body of the procedure. The compiler may exploit this to
produce more efficient code.

24

TTTHY

0 that if the value of the boolean running is TRUE, then INT runningis 1.

The following does conversion between INT and REAL32, and vice versa ,with
either rounding or truncation to IEEE standards:

REAL32 ROUND x converts x of type INT to type REAL32
INT ROUND x converts x of type REAL32 to type INT
REAL32 TRUNC x converts x of type INT to type REAL32:
INT TRUNC x converts x of type REAL32 to type INT

[1] 14.2 RETYPES

Occam 2 provides a potentially powerful way of pertorming type conversion
in the form of an operator RETYPES whose use is of the general form

specifier name RETYPES element
or
VAL specifier name RETYPES expression

Warning: the use of retyping conversion will usually result in implementation
dependent processes, as the representation of variables will vary from one
implementation to another.

Here are some examples:

VAL REAL32 x IS 1.0 (REAL32) :
VAL INT xint RETYPES x :

CINT yint :
REAL32 y RETYPES yint :

VAL volume IS N*(N*N) :

[NJINJINJINT cube. sites :

[volume]INT vec.sites RETYPES cube sites :
The last example here shows how a three- dlmensxonal array may be retyped
as a vector, or one-dimensional array.

[1] 15. Miscellany

We finish this introductory chapter with some miscellaneous features which are
probably of lesser importance at a first reading.

[1] 15.1 Tables
One feature that was not included in the discussion of arrays and their
properties was the idea of a table in occam. Tables are a means of
generating an array value. Suppose that v is an INT variable, with current
value 1. The table

[v, v+1, v+2]

26

e e e e e et e P i

generates an array of type [3]INT with component values 1, 2, 3. The
array so generated may be referenced by subscript in the usual way:

[v, v+1, v+2]}[2]
or assigned to a variable:

INT v ¢
[3]INT vector :
SEQ

vector := [v, v+l, v+2]
or abbreviated to a name for later use:

INT v, w ¢
QAL vector IS [v, v+l, v#2] :
SEQ

W= vector[2]'
[1] 15.2 Continuations

When writing occam code we may sometimes create expressions or lists
which occupy more than one line of text. There is no explicit way in occam
of indicating that one line is a continuation of the previous line. However,
the general rule is that in occam we may continue from one line to another
at the same level of indentation, provided that the syntax makes.it clear that
a continuation is intended. In other words, a line which is to be continued
had better not terminate with a character which would allow the compiler to
suppose that the line is complete ! Examples: '

very.long.variable.name := very.long.variable.name +
even.longer.variable.name

is fine, but

very.long.variable.name := very.long.variable.name
+even.longer.variable.name

is not.

[1]1 16. Postscript

In this chapter we have tried to give an overview of the occam programming
language in enough detail, and with sufficient examples, to enable the reader to
start writing occam programs. No attempt has been made to be comprehensive or
definitive; for this reference must be made to the INMOS product definition for
occam 2, which describes features that have not been covered here and, in some
instances, have not yet been implemented in the currently available .compiler
releases. Highly recommended also is the INMOS document ‘A Tutorial
Introduction to Occam Programming’, written by Dick Pountain, but as yet not
generally available. This was an invaluable aid in the preparation of the lectures
which gave rise to the present book, and the inspiration for many useful examples.

27

2. Implementation of simple programs

[2] 1. Transputer Hardware

The transputer is the ‘computer on a chip’ (processor, memory and
communications) built by INMOS Ltd; hence the name, which is a composite of
‘transistor’ and ‘computer’. It is a programmable building block for concurrent
systems, spanning a range of sizes from microcomputer to supercomputer. The
transputer implements the process model of computation embodied in its native
language occam. Although transputers may be programmed in other languages,
occam, being equivalent to assembler, is the most efficient. The transputer
architecture is wordlength independent so that transputers of different
wordlengths may be interconnected and programmed as a single system. Since all
memory is local, the memory bandwidth grows in proportion to the number of
transputers. Each transputer has an external memory interface which extends the
address space into off-chip memory (it can be arranged for frequently-accessed
data to be stored on chip).

Transputers use point-to-point communication links. Every member of the
transputer family has one or more standard links which may be connected to links
on other transputers to build networks of various sizes and topologies. Hence, the
communications bandwidth does not saturate as more transputers are added.
Each link provides synchronous bidirectional communication corresponding to
two occam channels, one in each direction. Communication via any link may
occur concurrently with communication on all other links and with program
execution. An occam program is the same regardless of whether it involves
communication between processes executing on different transputers or on a
single transputer. More generally, a program intended for a network of
transputers, may be compiled and executed on a single transputer, which shares
its time between the concurrent processes. A process which is waiting for
communication or timeout does not consume any processor time.

A message is transmitted as a sequence of bytes, each sandwiched between
two ‘start bits’ and a 'stop bit, as in fig. 1.

data: |1|1| data byte IO] acknowledge:

Fig.1: Communication packets

After transmitting a data byte, the 'sending link controller waits until an
acknowledge (see fig. 1) has been received. The receiving link controller can
transmit an acknowledge as soon as it starts to receive a data byte, so

28

o e g ety e

e e e e et e e e

transmission can be continuous (in practice, early transputers do not send the
acknowledge until after the byte has been received). This protocol synchronises
communication of each byte, ensuring that slow and fast transputers, and
transputers of different wordlength, can communicate reliably.

All transputers support 10Mbit/sec links, some support 20Mbit/sec. INMOS
supplies link adaptors which interface transputers to non-transputer devices. A
low frequency clock (5MHz) is used irrespective of the performance of the
transputers. Each transputer increments a timer which may be read in occam and
used, for example in real-time systems, to determine the activity of a process.
Communication depends on frequency not phase, so transputers with independent
clocks can communicate reliably.

After reset, a transputer waits for the first message to be received on a link,
and interprets this as a program to be loaded and executed. This provides the
standard mechanism for bootstrapping a network of transputers. It is also possible
to bootstrap from external ROM.

Fig. 2 is a schematic diagram of a transputer. The following is a -brief
specification of the hardware.

system T 32-bit
<::::> services @ processor
2Kbytes
g?ar;;RAM 32 unk [ES?SL‘C
G| (GO ik
© W
o) unk [
e |70 X5
K 32 >

Fig. 2. Schematic diagram of a transputer

T414: 32 bit, 10 MIPS processor;
2Kbyte static memory (80Mbyte/sec access);
direct address space for up to 4Gbyte off-chip memory (25Mbyte/sec
access);
typical floating point operation = 240 cycles;

29

T212: 16 bit, 10 MIPS processor;
2Kbyte static memory (40Mbyte/sec access);
_ direct address space for up to 64Kbyte off- chxp memory (20Mbyte/sec
access); ; .
typical floating point operation = 550 cycles;

Both: single CMOS chip (1 5 micron);
4 INMOS standard, full duplex, serial links’ (20Mb|t/sec each)
reduced instruction set, providing direct implementation of occam model;
various processor speeds e.g. T414-20 executes 20 cycles per usec;
timer: high priority 1 tick = 1 usec
low priority 1 tick = 64 - usec;
compilers for C, Fortran 77 and Pascal;

T800: designbi'n preparation via ESPRIT project, see section [6] 1, page 80 for
more details. -

[2] 2. Configuration

Configuration is what happens at the topmost level of an occam program to
determine how the program is mounted on particular hardware. Configuration
associates specific processes with real processors, and specific occam channels
with real hard links. It does not affect the logical behaviour of the program.

The rules for configuration depend on the particular occam system in use, and
the manual will need to be consulted for details.

[2] 2.1 IBM PC + B004 Board

In the simplest case, this is configured as follows. The complete program
should be packaged as an occam procedure with the .channel keyboard and
screen as parameters (analogous to an. SC PROC). The corresponding fold should
be filed and labelled EXE. It may then be compiled, linked and run, inputting from
the keyboard and outputting to the screen.’

egd.

{{[F ascii.tsr
PROC ascii (CHAN keyboard, screen)
...F defs.tsr
««.F streams.tsr
INT char :
SEQ
Writes(screen, "Hello *C*N")
char := 0
WHILE char <> 32
SEQ
keyboard ? char
Writen(screen, char)
newline()

i

30

iS

It is instructive to discuss parts of this program in detail.

(a)

(&)

{c)

The PROC Writes outputs a string of characters to the screen. It is to be
found in the filed fold streams.tsr. Itis

PROC Writes (CHAN out, VAL [IBYTE string)
SEQ i = O FOR SIZE string
out ! tt.out.int; INT stringi]

This sends the characters in the BYTE array string sequentially down the
channel out. SIZE string gives the number of elements in. the array
string. The channel communication implements a particular protocol
appropriate for the PC+B004, in which each character is converted to type
INT and preceeded by a tag tt.out.int (whose value is previously defined
in the filed fold defs.tsr). Note that if several values are to be output to
the same channel sequentially, this may be written as a single line of occam
in which the values are separated by semicolons, i.e. the above output is
equivalent to :

SEQ
out ! tt.out.int
out ! INT string[il]

The particular instance of Writes in ascii replaces the formal parameter
out by the actual parameter screen, and similarly replaces string by
iHallo *C*N". Notice that the ‘newline’ (*N) and ‘carriage return’ (*C)
characters must follow the text of the message. This is because the screen
channet is buffered, and otherwise would not display the message until the
buffer is full. The effect is to write Hello on the screen and place the
"cursor at the start of a new line.)

keyboard ? char inputs the code for a single character typed at the
keyboard into the variable char.” Note that this will usually be the ASCI
code for the key typed, so that if the 1 key is pressed char receives the
value 489, which is the ASCIl code for the numeral 1. The same applies in
sending characters to the screen; sending 49 will result in a 1 appearing on
the screen. In occam 'x' is the ASCH code for character X and is of type
BYTE. The ASCIl codes are given at the end of this chapter.

The program ascii outputs the ASCIl code for any key that is pressed,
terminating when it receives the ASCIl code for ‘spacebar’ (32). Outputting
a number to the screen is performed by the procedure Writen (CHAN out,
VAL INT n), which is too long to describe here. It has the effect of
outputting the ASCH codes for successive digits of the integer n to the
channel out, each preceeded by the appropriate protocol.

Clearly, if it is réquired to do arithmetic with the numbers input from the

keyboard, they will have to be adjusted by subtracting 48 or INT '0'. Similarly,
adding INT '0' converts a number of type INT toits ASCIl code of type INT.

For the more general case including file 1/0, the manual for the Transputer

Development System on the IBM PC must be consulted.

31

[2] 2.2 Computing Surface

As a simple example, consider the following program consisting of two
processes running in parallel on two processors (which is appropriate for a
standalone program on the Computing Surface; see [3] 4.1 and chapter 6).

... SC host.proc
... SC master.proc

{{{ declarations

{{{ hard channel placement values
VAL TinkOout IS O
VAL Tinklout IS 1
VAL Tink2out IS 2
VAL Tink3out IS 3
VAL 1inkOin IS 4
VAL linklin IS 5
VAL 1ink2in IS 6
VAL 1ink3in IS 7
1

{{{ channel declarations
- CHAN host.to.master, master.to.host :

11

... oOther declarations

m

PLACED PAR

PROCESSOR 0 T4 —-- the host processor . : |
{{{ placement for host . c e
PLACE host.to.master AT linklout. :
?%?CE master.to.host AT linklin :
host.proc (host.to.master, master.to.host)

PROCESSOR 1 T4 -- the master processor
{{{ placement for master
PLACE master.to.host AT TinkOout :
?%?CE host.to.master AT 1inkOin :

master.proc (master.to.host, host.to.master)

e 83 se 86 05 24 28 e

r
i

|
=

host.proc runs on the host transputer {in the Edinburgh system, only system
code is allowed to run here), and master.proc runs on the master transputer
{which is connected to the host and graphics transputers, as well as two slave i
transputers, in the Edinburgh configuration, see [3] 4.1). In. this example, the user }
program is presumed to be in master.proc. More generally, the master plays a
controlling role (for example, having the capability of file I/0) over some .number of
slave transputers on which other processes are running.

32

right .frpm[i-ﬂ/_\right .from[i]

mQua

left.toli-1] left.tolI]

Fig. 3: Channel names in placement for s/hg/y—connected ring

Here, each bidirectional link is drawn as two lines. The 1~dimensional arrays of
channels are defined in the declarations fold.

[2] 3. Timers

Objects of type TIMER behave like channels which can be input from but not
output to; the value input is the current time, of type INT. .

e.g.
TIMER clock :
INT time:
clock ? time
Typically,

1 tick = (5 x 64) / input clock rate = 64 x 107° sec

Whenever the value of time exceeds the maximum value that can be represented
by an INT, it becomes maximum negative (2's complement) and continues
counting towards zero {every 4.2 min in 16-bit, every 75 hr in 32-bit). Therefore,
time differences must be calculated in modulo arithmetic. .

It is possible to declare more than one ‘ti‘mer (a)though,_they will all return the
same value when running on the same processor). Several components of a PAR
may input from the same timer.

[2] 3.1 Delays

A delayed input is an input from a timer which cannot proceed until the time
has reached a certain value. :

e.g.

PROC delay (INT interval)
TIMER clock :
INT now :
SEQ
clock ? now
clock ? AFTER now PLUS interval

34

Note: no variable changes value in a delayed input; the value from clock is only
compared with the value of the expression now PLUS interval.

AFTER is a comparison operator which returns a truth value.
x AFTER yis equivalent to (x MINUS y) > O

Delayed input may be used in ALT to provide a real-time wait. AFTER may be
used to check whether one time is later than another, but care must be taken
unless the difference between the two times is known to be less than the largest
(2’s complement) integer. ’) ’ o

[2] 4. Benchmark Programs

In this section, two example programs are given which make use of the occam
constructs which have been covered so far. Both involve timing various activities
of a single transputer. The reader should construct versions of these programs to
run either on a workstation or on the Computing Surface. The actual codes
written here will run on a workstation if they are put in a filed fold labelled EXE.
On the Computing Surface in Edinburgh, a ‘template’ has been written for the
‘master’ transputer (i.e. the transputer connected directly to the local host), and in
this case the PROC should be put in a fold marked USER PROGRAM in the template,
and the protocol for outputting to the screen changed appropriately.

{2] 4.1 Floating Point Arithmetic

The program flops computes the number of additions, multiplications and
divisions performed per second by a transputer. it does this by first determining
the clock rate of the transputer, then counting the number of ticks of the clock
between starting and ending some number of operations supplied by the user, and
finally converts this into flops. The top level of the program is listed below.

{{{F flops.tsr
PROC flops (CHAN keyboard, screen)
...F defs.tsr
...F streams.tsr
{{{ PROCs
... find.machine.type
... adds
... multiplies
... divides
111
INT any, num, ticks.per.sec :
SEQ
find.machine.type(ticks.per.sec).
... output machine type
... 1nput number of operations
adds(num, ticks.per.sec)
multiplies(num, ticks.per.sec)
divides(num, ticks.per.sec)
keyboard ? any '

m

35

The main features of this program are the following.

(a) The filed folds defs.tsr and streams.tsr contain system code and in
particular the 1/0 utilities needed.

(b) find.machine.type is a PROC which measures the number of ticks per
second of the clock on the transputer being used It is contained in the fold
PROCs and is: ‘ . :

[{[find.machine.type
PROC find.machine.type (INT ticks.per. sec)
TIMER time :
INT start, end:
SEQ
time ? start
"SEQ i = 0 FOR 5

SKIP
time ? end
end := end MINUS start
IF
end <= 1
ticks.per.sec := 15625
TRUE

ticks.per.sec := 625000
M

This times the operation SKIP and, on the basis of the number of ticks,
determines which of the two possible clock speeds the transputer has.

() The code for outputting the machine type and inputting the number of
operations is contained in the following two folds:

{{{ output machine type
Writen(screen, ticks.per.sec)
Writes(screen, " ticks per sec*C*N")

{{{ input number of operations
Writes(screen, "How many operations 7*C*N")
Readn(keyboard, screen, num)

newline()

The utilities for writing to the screen were described in section [2] 2.1 and
are further described in chapter 6. Readn is similar, except that it reads an
integer, num, from the keyboard and echoes it to the screen. All the utilities
are in streams.tsr and the user is encouraged to look at them.

(d) There follows three very similar procedures which compute the flops for
different arithmetic operations. The first is

36

(e)

{{{ adds
PROC adds (VAL INT num, ticks.per.sec)
INT start, end, ticks : S
REAL32 a, b, c, flops :
TIMER clock :
SEQ
b := 1.2345(REAL32)
¢ := 0.9876(REAL32)
clock ? start
SEQ i = 0 FOR num

SEQ
a:=b+c
b:=c-a
c:=a+hb
clock ? end.
ticks := end MINUS start
flops := ((REAL32 ROUND (3*num))*(REAL32 ROUND

ticks.per.sec))/(REAL32 ROUND ticks)
Writen(screen, INT ROUND flops)
Writes(screen, " flops for addition*N*C")

in

The new features of this PROC are the assignment of REAL32 values to b and
c and the type conversion required in the computation of flops to avoid
overflow. REAL32 ROUND x converts x of type INT to type REAL32 and INT
ROUND converts back again (rounding and applying IEEE standards). Note the
use of parentheses to specify the order of the arithmetic operations; occam
insists on this.

Finally, keyboard ? any prevents the program from terminating before you
get a chance to read the output on the screen! ‘

Exercises

0]
(i)
(iii)

Run the floating~point arithmetic benchmark on your system.
Modify the program to obtain benchmarks for integer arithmetic.

What happens if b and ¢ are defined as VALs (and the assignments to b and
¢ omitted, of course)?

{2] 4.2 Communications

This program computes the bandwidth (in byte/sec) for soft channel

communication between parallel processes on a single transputer. (A soft channel
implements communication between parailel processes via writing to and reading
from memory, rather than via transfer along hard links.) A character is read from
the keyboard and circulated atound a ring of processes, each of which reads the
character from its input channel and sends it down its output channel. The top
tevel of the program is:

37

{{{F comms.tsr
PROC comms (CHAN keyboard, screen)
... master
... Slave
VAL INT n IS 99 ¢
[n+1]CHAN ring :
master(ring[0], ring[n}, n)
PAR i = 0 FOR n
slave(ring[i], ring[i+1])

1

This displays the overall structure, in which the master process sends a character
around a ring of slaves. Channel ring[0] 'emerges’ from the master process
and ‘enters’ the first slave process, from which channel ring[1l] ‘emerges’, etc.,
" eventually joining back to the master. Details of those parts of the program which
differ from flops are given below.

(a) The job of timing the transfers and computing the bandwidth is done by the
master process:

{{{ master :
PROC master (CHAN to.ring, from.ring, VAL INT n)
...F defs.tsr
...F streams.tsr
... find.machine.type
INT ticks.per.sec, char, start, end, ticks, any :
REAL32 bytes.per.sec :
TIMER clock :
SEQ
find.machine.type(ticks.per.sec)
" «e. Output machine type
... input character from keyboard
... time the passage around the ring
... compute bandwidth & output result
keyboard ? any

m

This has several PROCs in common with flops. The two new ones, and the
basic parts of this program are:

{{{ time the passage around the ring
clock ? start

to.ring ! char

from.ring ? char

clock ? end

ticks := end MINUS start

screen ! tt.out.int; char

newline()

38

[——

and

{{{ compute bandwidth & output result

bytes.per.sec := ((REAL32 ROUND (4*(n+1)))*(REAL32 ROUND
ticks.per.sec))/(REAL32 ROUND ticks)

Writen(screen, INT ROUND bytes.per.sec)

Writes(screen, " bytes per sec*C*N")

m o

These should be seif-explanatory. As before, real arithmetic is used to
compute the bandwidth in order to avoid overflow.

(b) The slave process, which is replicated n times and run in parallel with the
master (why in parallel ? -~ because, otherwise the program would deadlock
with the master trying to send and nobody else ready to receive) is very

simple:
{{{ slave
PROC slave (CHAN in, out)
INT char :
SEQ
in ? char
out ! char
I3y
Exercise

Modify this program so that each slave sends the message Hello from slave
number, followed by its own ID, around the ring and onto the screen.

39

character decimal

Tine feed
carr/return

space
1
0

I o= e - R0 RV Sk

CONNT D WN RO

ASCIl characters and the decimal code equivalent.

10
13
32
33

34 -

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

character decimal

—

N< XX ECC DO DOZE R IOMMODO@ED>

40

65"

66

67

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

88

89
90

91

character decimal

N XEQSC N SOT O DT T st XLty wht =3 “h D OTo

-

97
98
99
100

101 -

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

92

3. Case Study: Cellular Automata

[3] 1. Introduction

The purpose of this chapter is to investigate how to implement an occam
program on a network of transputers. The example chosen is that of a
1-dimensional cellular automaton. This is conceptually very simple, has a high
degree of parallelism and produces interesting pictures on a simple VDU screen.

Cellular automata are discussed in some generality in chapter 4, where it is
emphasised that they constitute a generic class of problems for parallel
computers. Here, we will focus on the simplest of them as this exposes the
structure of the program, and especially the communication harness, without the
distraction of complicated calculations. You will see that parallel implementations
of this type occur quite often in real applications.

The cellular automaton we are going to simulate consists of a linear chain of
cells with periodic boundary conditions (i.e. a closed ring). Each cell may exist in
one of two states, 0 or 1, represented by ' ' and '*', respectively, on the screen.
The system starts off (at time 0) with any initial state input from the keyboard by
the user. It subsequently evolves in discrete time steps in which every cell is
updated simultaneously according to a simple rule, and the new state is drawn on
the next line of the screen. The rule is that the state of each cell is given by the
sum of the states of itself and its two nearest neighbours at the previous time
step, modulo 2.

{3] 2. The Process for One Celi

The obvious way to map this problem onto a network of transputers is
geometrically (see chapter 4 on Paraliel Algorithms), i.e. put consecutive groups of
cells on consecutive transputers connected in a closed ring, as shown in fig. 1.

transputers ' cells
I R

.| I

/ soft \

H link H

i

‘\\ l hard l ! g
S link -,

Fig. 1. Geometric decomposition of 1-dimensional cellular automaton

41

This uses up two of the links on each transputer. At least one transputer (the
master) will have to take charge of 1/0 from the keyboard and to the screen, but
either of the spare two links are available for this. On the Computing Surface
configured as in chapter 6, the master should be connected directly to the host,
but this will be considered further when we discuss placement.

Let us begin by considering the process which will reside on any one of the
slaves. This will consist of processes for- some number of cells, running in
parallel (this is just the physical situation). All the cell processes are identical.
Each cell process must first input its initial state, and then perform a sequence of
updates (taking information about the states of neighbouring cells from
neighbouring cell processes). After every update, each cell must send its current
state to the master for outputting to the screen. Finally, the cell must be ready at
all times to receive a message, originating from the master, telling it to terminate.
Adopting a ‘top-down’ approach to this program, the cell process might look like
this:

PROC cell (CHAN left.in, left.out, right.out, right.in)
{{{ PROCs
... initialise
... update
... Send.state
11}
INT state :
BOOL running :
SEQ
1n1t1a11se(1eft in, right.out, state)
running := TRUE
WHILE running
SEQ
update(state)
send.state(left.in, right.out, state, running)

.
-

Here the channels in and out of the cell are labelled as shown in fig. 2.

right.out

left.out right.in

Fig. 2: Soft channels for a cell

The simplest process to describe is update, which broadcasts the current state
of the cell {called state in the above program) to its neighbours in parallel with
inputting the states of its neighbours. It is essential that these processes run in
parallel to avoid deadlock. Once, these communications have taken place, the cell
may update its state using the rule described in section [3] 1. The occam process
for this is:

42

The code here allows for the possibility of an incomplete initial state being sent
out by the master; cells which receive an ‘end of initial state’ command instead of
a 1 or 0, set their initial state to 0.

Following the command structure outlined above, the cell process may be
completed with ’

PROC send.state (CHAN in, out, VAL INT state, BOOL running)

INT x @
BOOL talking :
SEQ

talking := TRUE
WHILE talking

SEQ
in 7 x

IF
x>1
SEQ

out ! state; x
talking := FALSE
x <0
SEQ
out ! state; x
talking := FALSE
running := FALSE
TRUE
out ! x

..

This implements the final piece of the command structure, which will terminate the
cell process on receipt of a negative integer, having previously output its final
state followed by the negative integer in order to terminate the other cells further
around the ring. The first process to terminate is the first in the ring, the last
process to terminate is the master, after it has received the final state of thie
automaton and output it to the screen.

[3] 3. Connecting Processes Together & 170

This is the major exercise for the reader. In the next section the placement for
rings of 10 and 40 transputers will be discussed. These include the master in the
configuration assumed as in fig. 3 (see [3] 4.1). Those that have a workstation for
this exercise may choose a slightly different configuration.

The cell process is complete (uniess you choose to change the control
structure). You will need to write a master process which handies 1/0 with your
terminal and sends appropriate commands around the ring (see [3] 4.4 for a
solution). You might decide, initially, to restrict the freedom of the user to choose
arbitrary initial conditions (e.g. setting up the initial state in the master, rather than
inputting it from the keyboard) and to terminate the program at will {(e.g. fixing the
number of time steps). In some sense, the most elementary initial states are
either a random sequence of 0s and 1s, or a single nonzero cell.

44

Also, depending on how many transputers you include in the ring, you may
choose to have one, two, or more cell processes per transputer in order that the
cellular automaton picture approximately fills the screen. Note that if you place
more than one cell on each transputer, some of the channels left.in, left.out,
right.in and right.out will be soft channels internal to one transputer, while
others will be PLACED AT hard links. This in no way alters the logical structure of
the program. ‘

[3] 4. Ring Placement
[3] 4.1 Use of 10 Transputers

Eor the course for which these notes were prepared, the transputer array at
Edinburgh was connected up as a 4 x 10 array, with periodic boundary connections
(i.e. 2-dimensional torus) and with the host and graphics transputers inserted on
the links of the master transputer in the ‘short’ and ‘long’ directions ‘respectively.
This is shown in fig. 3. The placements given are based on the assumption that
you are booting the code from within OPS and hence placements for the host
are omitted (c.f. [2] 2.2, and see chapter 6 for details of this).

To begin with, recall that the placement for the master alone is:

PROCESSOR 1 T4
master()

where the placement for the channels to.host and from.host are contained in
master.

There are many ways of placing rings of various lengths on the 4 x 10 array.
One of the simplest is the ring of 10 transputers, closed by the graphics transputer
G, shown by the solid lines in fig. 3.

Fig. 3: Ring of 10 transputers embedded in the 4 x 10 array

The graphics transputer may play a completely passive role as message.passer:

45

PROC message.passer (CHAN left.in, Teft.out,
right.out, right.in)
PAR
WHILE TRUE
INT any :
SEQ
left.in ? any
right.out ! any
WHILE TRUE
INT any : ;
SEQ
right.in ? any j
left.out ! any .

where the channels are named as in fig. 2.

In the 'Edinburgh configuration’, the hard links are numbered as in fig. 3.
Consequently, the following placement is appropriate:

... SC master

... SC slave

... SC message.passer

{{{ declarations

... hard chanr.21 placement values
{{{ channel declarations

%%%]CHAN right.from, left.to :

... Other declarations

PLACED PAR
- PROCESSOR 1 T4 -~ master processor
PLACE right.from[0] AT 1ink3in
PLACE left.to[0] AT Tink3out
PLACE right.from{1] AT Tinklout
PLACE left.to[1] AT Tinklin
master(right.from[0], left.tol0], right.from[1], left.to[1])
PLACED PAR i = 2 FOR 9
PROCESSOR i T4 -~ slave processors
PLACE right.from[i-1] AT Tink3in
PLACE left.to[i-1] AT Tink3out
PLACE right.from[i] AT Tlinklout

PLACE left.toli] AT Tinklin -
slave(right.from[i-1], left.to[i-1], right.from[i], Teft.toli])
PROCESSOR 11 T4 -- graphics processor

PLACE right.from[10] AT 1ink3in o
PLACE Teft.to[10] AT Tink3out
PLACE right.from[0] AT Tinklout
PLACE left.to[0] AT Tinklin
message.passer(right.from[10], left.to[10],
right.from{0], left.to[0])

The arrangement of soft channels is shown.in fig. 3 of chapter 2, page 34.

46

[3] 4.2 Use of 40 Transputers

Placing a closed ring of 40 transputers, including the master, but not the host
or graphics, is harder to visualise, but only slightly more difficult to program.
There are, of course, several solutions to this problem, but perhaps the simplest is
shown in fig. 4, where the hard links that are not needed in the ring have been

omitted.

N
(o]
]
]
=l
[
]
=

]
-~
2]
)
5]
N
&=

H
Kl
~3

oG
S 2HE] B

6]
Eefae _j

Fig. 4: A closed ring of 40 transputers on the 4 x 10-array

The advantage of this choice (apart from the neat property described in the next
section) is that only two different types of placement are needed: one for
odd-numbered processors and one for even-numbered processors, as shown in

fig. 5. : .

- odd even

Fig. 5: The two types of node (and hard links) in fig. 4

47

The placement is as follows:

... SC master

... SC slave

{{{ dectlarations .
... hard channel placement values
{{{ channel declarations .
%?O]CHAN right.from, left.to :

... Other declarations

PLACED PAR
PROCESSOR 1 T4 -- master processor

PLACE right.from[{0] AT Tink2in

PLACE left.to[0] AT Tink2out

PLACE right.from[1] AT 1inklout

PLACE left.to[1} AT linklin :

master(right.from[0], left.to[0], right.from[1], left.to[1])

PLACED PAR i = 1 FOR 20

VAL id IS 2*i :

PROCESSOR id T4 -- even slave processors
PLACE right.from[id-1] AT 1ink3in
PLACE left.to[id-1] AT Tink3out
PLACE right.from[id\40] AT TinkOout
PLACE left.to[id\40] AT 1inkOin
stave(right.from[id-1], left.to[id-1],

right.from[id\40], Teft.to[id\40])
PLACED PAR i = 1 FOR 19

VAL id IS (2*i)+1 : .

PROCESSOR id T4 -- odd slave processors
PLACE right.from[id-1} AT Tink2in
PLACE left.tolid-1] AT Tink2out
PLACE right.from[id] AT linklout
PLACE left.tolid] AT Tinklin :
slave(right.from[id-1], left.to[id-1],

right.from[id], left.to[id])

o re sa ae
te e s oo

OTIY)

[3]1 4.3 Two Complete Rings ?

The second nice feature of the placement in fig. 4, alluded to above, is that the
links which have not been used form a completely separate closed ring, which
includes both the host and graphics. Thus, our 4 x 10 array admits two disjoint
closed rings. (As an exercise, you might like to prove the result for all rectangular
arrays.)

A slight rearrangement of the placement permits one ring to include the
graphics processor and the other the host, as shown in fig. 6.

48

U

s

1
1
1
T
]
B
1T
+
+
!
]
‘
1
t
+
[l
1
-
H
'

o

.. J—

Fig. 6: Two closed disjoint rings

This placement is appropriate for applications making use of real-time graphics
display. Geometric decomposition of a problem may take place on the host ring,
in which neighbouring transputers on this ring contain neighbouring data (see
chapter 4). The graphics ring, being completely disjoint from the host ring. may
be used to output graphics data without interfering with the computation going on
in the host ring. Note, however, that neighbouring transputers on the host ring
are not neighbours on the graphics ring. Data arriving at the graphics processor
will be jumbled up, and so it is necessary for each data packet to carry an
identifying label.

[3] 4.4 The Master Process for the Cellular Automaton

The master process for the cellular automaton requires access to the channels
screen and keyboard, as well as to the ring connecting up the celis. In the code
for the master given below, these are included as formal channel names in the
procedure definition. In practice, master should be run in parallel with system
code, and it is best for it to be packaged in some sort of template (see chapter 6).-

The toplevel of master is

PROC master (CHAN left.in, left.out, right.out, right.in,
keyboard, screen)
... PROC send.state
INT flag:
SEQ
... ‘input state
... run until signalled to terminate

49

The 1input state fold inputs characters from keyboard until a character other
than ' ' or '*' js encountered. The process initialise, running on each cell,
handles the case when too few initial states are input. If too many are received,
these are absorbed by the code in the fold called check for excess characters.

{{{ input state
BOOL inputting:
SEQ
inputting := TRUE
WHILE inputting
INT char:
SEQ
keyboard ? char
IF
char = (INT ' ')
right.out ! 0
char = (INT '**')
right.out ! 1
TRUE
SEQ
right.out ! 2
inputting := FALSE
{{{ check for excess characters
BOOL checking:
SEQ
checking := TRUE
WHILE checking

SEQ
Teft.in ? flag
IF
flag = 2
checking := FALSE
TRUE
SKIP
13y
33

The run until signalled to terminate fold is opened below. The interrupt
from keyboard is placed at high priority to ensure that it gets noticed. A cell
process has not been included in master, although it might have been, so the
. Master must act as a message-passer between the cells on its left and right.

50

{{{ run until signalled to terminate
BOOL running:
SEQ
running := TRUE
WHILE running
INT any:
PRI ALT
keyboard ? any
SEQ
right.out ! -1
running := FALSE
send.state (left.in, screen)
TRUE & SKIP
INT right.state, left.state:
SEQ
right.in ? right.state
left.out ! right.state
left.in ? left.state
right.out ! left.state
right.out ! flag
send.state (left.in, screen)

m

Finally, the process send.state is used to output the latest state of the
automaton to screen Note that it is not the same as the process of the same
name running on each cell.

{{{ PROC send.state
PROC send.state (CHAN in, out)
BOOL running:
SEQ
running := TRUE
WHILE running

INT x:
SEQ
in ? x
IF
x =0
out ! INT * !
x=1
out ! INT '#*!
TRUE
‘SEQ
out ! INT '*N'

running := FALSE
1

TEMPLEMAN |

51 LIBRARY

4, Parallei Algorithms

[4] 1. Introduction

Parallel architectures of the MIMD (Multiple Instruction Multiple Data) type, and
particularly distributed memory systems like the transputer, offer a modular
approach to the construction of computers which may be tailored to suit individual
applications. [For the purpose of this chapter, SIMD (Single Instruction Multiple
Data) machines like the DAP and Connection Machine will be ignored.] Parallel
processing offers a speed-up beyond the technological limitations on
single-processor systems which, at the high-performance end, may be an order of
magnitude more cost-effective than vector supercomputers.

ldeally, a program runs N times faster on N processors than on a single
processor, although the actual speed-up may be much less. The design of
algorithms to achieve this sort of speed-up is an active area of research. Since
the algorithm, programming language and hardware are intimately connected, this
exercise is difficult to carry out in general. Occam and the transputer constitute a
world in which these questions can be addressed and, in a growing number of
cases, answered. Unfortunately, parallel computers are not very forgiving; the
difference between the performance of a good and a bad program is much greater
than for a serial computer. The crux of the matter is not in the writing of a
program, but in the way in which an application is mapped onto the architecture.
To do this efficiently the user must ‘think parallel’,

In addition to the normal considerations of numerical analysis, the user must
now take account of

(a) how data is to be distributed in memory;

(b) how computations are distributed among processors; -
(c) inter-processor communications;

(d) inter-processor connections, if reconfigurable. -

The aim is to match the parallelism of the algorithm to the parallelism of the
computer in such a way as to minimise the execution time of the program. At any
stage within an algorithm, the parallelism of the algorithm is the number of
operations that are independent and can therefore be performed concurrently.
This may vary from stage to stage. The natural hardware parallelism is the
number of processors that may run concurrently, including both arithmetic and
link processors on the transputer. In devising parallel algorithms we are
concerned with maximising

efficiency = t1 / N X ty
t; = time taken by program on one processor

ty = time taken by program on N processors

52

[4] 2. Independent Tasks
" [4] 2.1 The Task Farm

One of the simplest, and often the most efficient, ways' of exploiting -parallel
processing is to distribute independent tasks to each of the processors. Such a
configuration ‘of the system may be called a task farm, 'and:in general -it will
consist.of @ ‘'master’ processor, whose job it is to distribute the tasks and collect
the results, and some number of ‘slave’ processors, which actually do the work.
Many different organisations of processors are possible, e.g. a tree with the master
as a root, or a.continuous chain beginning with the master, as shown in fig. 1.

graphics

Fig. 1. A transputer pipeline.

Of course, other processors may be added for example to handle external 1/0,
graphics, or to perform a statistical analysis of the results from each of the tasks.

In ‘the simplest situation, each slave processor executes the same serial
program on its own data set. The assignment of tasks by the master processor
becomes part of the operating system and can be made transparent to the user.
All that the user needs to supply is a serial program and some number of data
sets requiring processing. In order to make efficient use of a large processor
array in this way, the number of data sets should be very large. The major
difficulty is in achieving sufficiently fast data-transfer rates between magnetic
tapes, or disks, and the slave processors, so that none of them is held-up waiting
for others to read or write data. This may be solved using distributed mass
storage devices, each associated with a small group of slave processors and
controlled by some peripheral processor. In the situation in which the 170
bandwidth is high enough, such a task farm can achieve a speed-up relative to
one processor equal to the number of processors.

A rather more sophisticated operating system would permit more than one
user program to run on a task farm at any one time, each user being allocated a
portion of the farm. It would be important, under such circumstances to be able
to trap wayward programs to prevent them corrupting others.

54

T

e

[4] 2.2 Ray Tracing

Another variant on the task-farm approach, is when a single computation can
be divided up into many independent sub-tasks which can be farmed out amongst
the slaves. A successful implementation of -this.is ray tracing, which is a way of
displaying 3~dimensional pictures on a 2-dimensional screen (Dettmer, 1986). - This
involves setting, up- the 3-dimensional. ‘world’, i.e. the objects which are.to be
viewed through the screen, and then devising a mapping of this onto the screen.

The basic idea behind ray tracing is to reproduce what happens in a pinhole
camera. The image on the.screen is built up from rays of light, coming from .the
objects, which pass.through the pinhole. These rays may be identified by starting
at the screen and tracing back, through the pinhole, onto a surface in the
3-dimensional world. Each ray is then reflected backwards to determine whether it
comes from another surface or from a light source. This béckward tracing
continues until the ray ends at a light source or passes out of the world. Once
the source of a ray has been identified, the path of the ray is retraced from the
source to determine the colour and brightness of the corresponding pixel on the
screen. The complete picture is built up by tracing one ray for each pixel. The
paths of the reflected rays and the levels of illumination depend on the nature of
the light source (e.g. ambient light, which is uniform in all directions, or point
sources) and on the type of reflecting surface (e.g. matt, from which reflection is
diffuse and in all directions, smooth, which reflects an incident ray as a cone of
light, or mirrored, in which the light is reflected as a single ray); other optical
effects, such as refraction by transparent objects, can also be included.

The ray tracing algorithm involves a great deal of computation. For each ray,
the first task is to determine the point at which it strikes a surface in the
3-dimensional world. This involves solving a system of linear equations, given the
equations of all the objects. The properties of the surface determine how the ray
is reflected, and the procedure is repeated. This can become very complicated in
the case of multiple reflections from smooth surfaces. Although computationally
intensive, the algorithm is highly parallel as all of the rays are completely -
independent.

The arrangement of transputers in fig. 1is appropriate for this. Portions of the
screen are distributed by the master transputer down the pipeline. Each slave
takes a job from this stream, computes the image corresponding to that portion
and sends the result back down the chain to the graphics processor.

[4] 2.3 The Mandelbrot Set

Much the same technique may be used to compute the mathematical structure
known as the Mandelbrot set (Mandelbrot 1982). This has become established as a
benchmark for MIMD computers, because the algorithm is easy to state and
computationally intensive, involving many independent computations of varying
length. Consequently, it is susceptible to the same parallel attack as ray tracing.
The set has a very intricate, fractal structure, which can provide hours of artistic
pleasure, provided portions of it can be computed quickly.

The set was discovered in 1980 by Mandelbrot, using computers at IBM. Fig. 2

is a photograph of part of this set in the final stages of computation by the
Computing Surface at Edinburgh.

55

Fig. 2. Photograph of partially completed image of the Mandelbrot set.

The picture represents part of the complex plane of the variable ¢ = p + ig
(through coordinates p and q: -2.25 < p < 0.75, =15 < q < 1.5). For each pixel,
which defines the value of ¢, the sequence of complex numbers z,, is generated via
the feedback loop:

- 2
Zne T 240 F C

Either the 2's are attracted into a closed cycle, or they tend to infinity. The points
that cycle correspond to values of ¢ in the Mandelbrot set. So for each value of n,
r = |z,%| is computed. If r > 100 then choose colour n for that pixel and move
on to the next pixel; if n = maximum number of colours, set the pixel to black and
go on to the next pixel; otherwise calculate a new z (see Peitgen 1986 for a fuller
description of the algorithm).

Clearly, the number of times the feedback loop is executed varies from pixel to
pixel. Each slave transputer in fig. 1 may accept portions of the screen for
computation, as distributed by the master. Provided the screen is divided up into
many more small tasks than there are transputers in the chain, the algorithm
naturally load-balances. Transputers given black areas take .longer to complete
than others, but no-one is held up waiting for their result. On the Edinburgh
Computing Surface, with 39 slave transputers, a 576 x 788 screen image is
typically completed in a few tens of seconds. Because of the high degree of
parallelism, a linear speed—up by a factor of 10 may be achieved using 10 times as
many transputers.

[4] 3. Geometric Parallelism
[4] 3.1 Introduction

Geometry is based on the concept of distance, and the geometric
decomposition of a problem divides the data up into subsets such that the data
points in any one subset are in some sense closer to each other than to the data
points in any other subset. The problem possesses geometric parallelism if, in
addition, the algorithm involves only local operations i.e. connecting data points
that are close together.

56

As an example, consider the computer simulation of fluid flow. The region of
space occupied by the fluid may be divided up into subregions, equal in number to
the number of available processors. Each processor is given the responsibility of
handling the fluid in one subregion. Because the behaviour of a tiny fluid element
is determined only by the fluid elements immediately surrounding it (which exert
forces on it), the evolution of the fluid in the interior of each region is determined
entirely by data which is present in that processor’s local memory. However, fluid
may flow across the boundary of one subregion into the neighbouring subregion.
The data corresponding to those fluid elements that flow across the boundary
must be transferred between the memories of the processors handling the two
subregions. Typically then, there must be a transfer of surface data, while interior
(or bulk) data remains local to a single processor. The amount of data which must
be transferred relative to the amount which can be processed internally goes like
the ratio of the surface area to the volume. This is directly related to the
balance of computation vs communication. [t is therefore important to pick
subregions which have as small a surface area as possible for fixed volume. This
maximises the likelihood that it will be possible to overlap communication of
boundary data by computation using only bulk data.

The communication time is also proportional to the distance between
processors. So, in order to keep down the communication time, the processors
handling neighbouring subregions of the fluid should themselves be close together;
ideally they should be neighbours. This completes the geometric decomposition
i.e. the processor array should have, as far as possible, the same geometry as
the system being simulated.

At this point two general questions may be raised:

(i) The need for the processor array to have the same geometrical configuration
as the system being simulated comes about because, at the present level of
technology, communication is expensive. However, communication chips
with transfer rates comparable to current memory-access times are being
developed. These may be available by 1990. The geometric decomposition
onto arrays incorporating this technology will be much less restrictive. The
aim is for such arrays to appear to the user as shared-memory machines, in
which every processor can access every other processor's memory at
negligible cost. If you can afford to wait until 1990, then the problems of
geometric decomposition need not concern you greatly! However, this
approach is bound to be expensive.

(i) Transputers only have four links, and hence at most four nearest neighbours,
yet the number of neighbours of a subregion in 3-dimensional space
(discretised on a regular cubic lattice) is six. It is clear that we cannot
simply map subregions onto individual transputers, as implied above. The
solution is to build supernodes, such as in fig. 3. These have six links and
could be used as building blocks for the processor array, with subregions
being mapped onto supernodes. This introduces the extra complication of
distributing the data in one subregion over the transputers within one
supernode, and of handling internal communications. But there is little
choice until a 6-link transputer appears on the market! (A fast local switch
might also solve the problem, but could be expensive.)

57

Fig. 3: Examples of 6-link supernodes.

“Thus, in geometric parallelism a physical system is simulated on a
homogeneous array of supernodes. The same program runs on each supernode,
operating on local data and transferring boundary data to neighbouring supernodes
as necessary. Of course, there will be a few other transputers running special
tasks such as external 1/0, monitoring and data analysis. Each of the supernodes
is brought into synchronisation with its neighbour when boundary data is
transferred. Since each supernode is doing approximately the same amount of
work, this effectively brings the supernodes into something akin to lockstep. This
is how an MIMD array operates in SIMD mode. It can be a highly efficient mode
of operation for big problems, and is relatively simple to program because of the
homogeneity. There may be difficuities if the algorithm requires global information
at any stage, but this will be dealt with later.

[4] 3.2 Cellular Automata

Many problems in the computer simulation of systems in .science and
engineering can be tackled using geometric decomposition e.g. weather, wind
tunnels, oil reservoirs, finite element analyses of structures, semiconductors,
molecules, image processing, the interactions of elementary particles etc.. The
simplest of all, and arguably the most fundamental, are cellular automata (CA)
(see Wolfram 1986 for a collection of modern papers on the subject).

CAs were invented by von Neumann around 1950 during his search for a
self-replicating machine, i.e. a machine capable of constructing exact copies of
itself, given an appropriate supply of material. Ulam suggested he restrict his
attention to uniform cellular space i.e. space filled with cells, each of which may
exist in a finite number of states including the empty state, and evolving by
discrete time steps in lockstep, via transition rules which depend only on the
states of nearby cells. Von Neumann was then able to prove that, if each cell
could exist in one of 29 states and had 4 orthogonally adjacent neighbours, then
there is a configuration of some 200K cells that contains a universal computer
(Turing machine) and hence is a universal constructor. Subsequently, many CA
‘games’ have been devised, in 1-, 2- and 3-dimensions, of which perhaps the most
famous is Conway’s ‘Life’ (Gardner 1970).

58

There seems no limit to the application of CA ideas: from self-replicating
moving automata resulting from complex transition rules in the primordial soup of
amino acids, to board games like chess, image processing techniques, self-fearning
machines and even the universe itself. From our point of view, it is important to
note that CAs model parallel computers, such as DAP and CLIP (Cellular Logic
Image Processor). It is not surprising then that CA systems map very naturally
onto paralle! architectures ‘and that the natural mapping is a geometric one.

The simplest CA consists of a line of cells a;, i=1..n, with periodic boundary
conditions (ays = 1), each of which can exist in one of two states a; = 0 or 1.
This system evolves in time according to a deterministic rule, applied
simultaneously to every cell, whereby a; at the next time step depends only on the
present state of itself and its nearest neighbours i.e, in general,

at+1) = f(da4() + 2a,(8) + aa(t) + 1)

It is easy to see that there are 28 possibie rules, labelled by rule numbers r = 0 10
255, such that f(x) is defined to pe the x digit in the binary representation of r
(reading from the least significant digit). Examples of the patterns generated from
a single nonzero seed are shown in fig. 4; clearly, there is a wide diversity of
. pehaviour, even in such a simple system as this. [For drawing coloured pictures
one must consider cells with a number of states equal to the number of colours

and generalise the above rule accordingly (see Wolfram 1986).]

rule 30 rule 45

rule 150 rute 169

Fig. 4: Examples of 1-dimensional CA patterns.

59

The simplest implementation of this algorithm is on a chain of transputers, as
shown in fig. 1. An occam procedure which updates a cell may run in parallel with
the updating of every other cell, communicating with left and right neighbours
through channels. In the simplest mapping, one such procedure is placed on each
transputer and the channels are mapped onto transputer links. Bigger CA systems
may be simulated by placing more than one cell on each transputer, in which case
some of the channels -are internal soft channels (i.e. memory locations). Since
there are two more spare links per transputer, thése may be conveniently used to
form a second chain containing the graphics processor, down which display
information is sent. If the same links are used to pass both graphics and
nearest-neighbour information, then these data packets must be preceeded by
protocols to identify them and their destination. Clearly, it is easier to overlap
communication by computation as the number of CAs per transputer increases.

Anyone spending time exploring the different CA rules will quickly discover
situations in which most of the cells are dead and any interesting activity is
confined to a relatively small region. The geometric decomposition of the problem
then results in most of the transputers doing no useful work. This situation
becomes even more pronounced in higher dimensions e.g. in Life. The rule for Life
is the following. Each cell in a 2-dimensional square array may be alive or dead.
Its transition to the next generation is determined by the states of the surrounding
8 cells: a live cell with 2 or 3 live neighbours survives into the next generation,
otherwise it dies (of loneliness, or overcrowding);, a dead cell surrounded by
exactly 3 live neighbours gives birth and is alive in the next generation, otherwise
it remains barren. Conway was seeking a mode! of bounded growth. However, the
Al group at MIT soon found a ‘glider gun’ which emits a continuous stream of
‘gliders’ (groups of 5 live cells which travel with constant velocity), and, shortly
after, a 'breeder’ which endlessly produces ‘glider guns’. An ‘acorn’ starting
configuration has been found, which grows for 5206 cycles into a stable ‘oak’, so a
rich variety of behaviour is possible. It would be difficult to devise any
decomposition other than the obvious geometric one which could efficiently
compute all these different behaviours, particularly because any sophisticated
algorithm is likely to make use of global information. -

2-dimensional CA-like models cover some important applications, apart from
these games. For example, much of image processing is to do with applying local
cellular logic rules to picture elements. An application of potential importance for
engineering has come from recent work on the Connection Machine which shows
that CAs can be used to model the Navier-Stokes equations of fluid flow (see
Wolfram 1986). In the simplest case, 2-dimensional flows are represented by CAs
consisting of particles moving on a triangular lattice. The system evolves in
discrete time-steps in which first each particle moves from one lattice site to the
next in the direction of its velocity vector, then it collides with any other particles
which arrive at the same site, conserving particle number and momentum.
Hydrodynamic variables are computed by averaging over the particles in
subregions of, say, 64 x 64 sites. Since the occupancy of any site is restricted to
no more than one particle moving in each direction, the simulation can be
efficiently coded in bits, or short integers, which together with the obvious
geometric parallelism, makes it ideal for SIMD arrays like the DAP and Connection
Machine.

Models of magnetism give rise to similar simulations where probabilistic
transition rules are needed to represent thermal fluctuations. The simplest is the
Ising model which restricts the atomic spin at each site of a regular lattice to the
values 0 or 1. These spins interact with their nearest neighbours only, tending to
align with them. The thermodynamics is generated by a Monte Carlo algorithm.

60

e

[N

The spin at each site flips between the two allowed values according to a
probabilistic rule which depends on the energy change and the temperature.

In both the above examples, the configuration of the system is represented by
a small number of bits at each site of a regular lattice and the variables evolve in
parallel (though there is a subtlety in the thermodynamic case) in discrete
time-steps according to local rules. The geometric decomposition consists of
mapping subregions of the lattice onto a -2-dimensional array of transputers
(neighbouring subregions onto neighbouring: transputers) in the natural connectivity
of a ‘computing surface’.- The actual shape of the transputer array may depend on
the shape of the system being simulated e.g. an elongated rectangle, possibly even
a linear chain, for fluid flow down a channel (with non-slip boundary conditions
implemented using special CA rules at the edges), or a square array with periodic
boundary conditions (obtained by joining links on opposite edges) for the lIsing
model. As regards the efficiency of these implementations, the general discussion
in section 3.1 applies, and computation will completely overlap- communication
provided the subregions are large enough. Similar types of simulations in 3 or
more dimensions may be performed using supernodes with an appropriate number
of external finks.

The advantage of supernodes in this context is that extra links may be built in
for getting data on and off the array. This is particularly important if the
simulation happens to be feeding a real-time graphics display. However, in many
situations, data needs to be moved only at the beginning and end of a run. This
then neither interferes with the main part of the program, nor has to be
particularly efficient.

[4] 3.3 Partial Differential Equations

The situation when solving partial differential equations (PDE) by the method of
finite differences is almost identical to that described above, except that floating
point arithmetic is used instead of bit-manipulation. The same sort of geometrical
decomposition applies onto a supernode array with the same geometrical
configuration as the region of space (and time) in which the PDE is to be solved,
and iterative solutions typically consist of the application of local transition rules.

As an example, consider the solution of Poisson’s equation,
Vu=t
for u = u(xy) in a rectangle, given the values of f = f(x,y) everywhere and of u on
the boundary. The first step is to replace space by a rectangular grid of points
and the spatial derivatives by finite differences. The simplest approximation is to
use the 5-point star stencil in fig. 5. If the variables on the grid points are u(ij)
etc., this means
V2 u s uirng) + ui=10) + u(ii+n) + ulij-1) - 4u(id).
A relaxation algorithm for the solution rewrites the discretised Poisson egquation as

uif) = [u(i+1j) + u(i-1) + u(ij+1) + u(ij-1) - i) 1/ 4

in which it is assumed that the right hand side is evaluated and used to overwrite
the array element u(ij) corresponding to the interior point (i,j). If one of the

61

2
v o= (OO

Fig. 5: 5-point star stencil approximation to V2

points in this expression resides on the boundary of the region then its constant
boundary value is used. This is a particularly simple example of a local update, or
transition rule. Assuming this algorithm (Gauss-Seidel) converges fast enough to
be practical, the parallel implementation is exactly the same as for the CAs.

Sometimes, because of poor convergence of relaxation methods, more
sophisticated algorithms are required. These often make use of global
information, such as the sum of the squares of variables like u(ij) at the grid
points (e.g. the Conjugate Gradients algorithm for solving large sparse systems of
linear equations, such as result from discretising the Poisson equation). Local
sums may be computed by each processor, but then these values must circulate
around the array in order to accumulate and distribute the global sum.

For an LyxLyxLy array connected as a 3-dimensional torus (i.e. periodic in each
direction), an efficient way to do this is as follows. First, everyone sends their
value in the T1-direction, adding values they receive to their partial sums and
passing the values they receive on around the chain. After L,-1 transfers,
everyone in the same chain has the sum of all the local values in that chain. Next,
the same thing happens in the 2-direction, with everyone circulating their local
1-direction partial sums, until everyone has the partial sum for the (1,2) plane in
‘which they lie. This requires a further Ly,~1 transfers. Finally, these partial sums
are circulated in the 3-direction, to accumulate the global sum on every node. In
total Ly+Ly+L3-3 successive transfers are required (although each of these
corresponds to LylLyLy transfers in parallel, which are completely overlapped
because they are of identical size).

It is worth mentioning here that a distinction is sometimes made between
fine-grained and coarse-grained parallelism. The former is appropriate for
homogeneous arrays with, say, 1000 (simple) processors such as the Computing
Surface, the latter for a few 10s of (perhaps very sophisticated) nodes such as the
T-Series. Geometric decomposition works for both, and in this chapter it has been
implied that the larger the subregion placed on a node, the greater the ratio of
bulk computation to surface communication, and hence the higher the efficiency.
However, the efficiency depends critically on the balance between the
computational power on each node and the communications bandwidth
between nodes. If a coarse~grained array and a fine—grained array are to simulate
the same system, in the same real time, the coarse-grained array will have to
transfer proportionately more data between nodes than the fine-grained system.

62

If both rely on a single transputer link between neighbouring nodes, the
coarse~grained array will be more severely communications bound. This is in fact
the major drawback with the combination of hypercube architecture and powerful
vector nodes, being marketed by FPS and Intel; in order to realise the high
performance of these machines much faster internode communications is required.

[4] 4. Algorithmic Parallelism
[4] 4.1 The General Situation

This approach is to construct a network of transputers, each with its own
special role to play, through which all the data flows, as in a factory production
line. Typically, all the data is stored in the memory space of one transputer, which
then naturally acts as controller for the rest of the array. It feeds data through the
network of slave transputers, which need have only limited storage capacity and, in
particular, may have no off-chip memory at all (hence lowering the cost of the
system). Having constructed such a system, it may be replicated geometrically, as
in the previous section, but now each node contains more than one transputer i.e.
is a supernode.

There are a number of difficulties with algorithmic parallelism. One is that at
different stages during the computation, different algorithms may apply, and a
configuration of transputers optimised for implementing one algorithm is unlikely
to be appropriate for another. For example, one algorithm may be used to
generate a set of data and a different one used to analyse it. This problem is, of
course, much reduced if the transputers are connected by a dynamically
reconfigurable switch (as they will be in the ESPRIT, ITEM and Meiko arrays, for
example). Otherwise, the data analysis must be done on a different group of
transputers from those generating the data. Since analysis cannot typically
proceed in parallel with data generation, either a duplicate of the data must be
stored or data generation must be suspended during analysis. The latter is
undesirable as it reduces efficiency. :

Another difficulty to be solved is how to get control data to each of the
slave processors, for example in order to initialise them at the start of the
computation. Since each slave has. a different job to do, it will expect to receive
‘personalised’ instructions. One way of accomplishing this is via -a
package-routing network which uses the same link configuration as during
operation. A packet has a header indicating its destination and a data length. The
data content of most of the packets originating from the master controller consists
of an instruction code followed by some parameters. Similar packets may be used
by the slaves to convey their status back to the master.

Finally, it may happen that one process dominates the execution time. If this
process cannot be divided up amongst more than one processor, it alone will
determine the throughput and constitute a bottleneck.

[4] 4.2 Long-range Interactions

The applications considered up to now have involved only short-range
interactions. This is typical of the finite difference method for solving partial
differential equations, where updating the approximation to the field variable at
each grid point requires only information about the field values at neighbouring
grid points. Then a straightforward geometric decompaosition in which each
processor handles a sub-region of space (and time) provides an efficient

63

implementation on a regular processor array. The algorithm for each processor
proceeds in much the same way as for a serial computer until boundary
information is required, at which point the processor must communicate with a
neighbouring processor.

Problems with long-range interactions may also be implemented efficiently in
parallel (Fox et al. 1984). As an example, consider the time evolution of the solar
system. This is a 10~body gravitational problem in which the force between any
two particles is given by Newton's law,

= 2
Fii =G m;mj/r;j

and we wish to evolve the 10 equations of motion for some period of time T.
There are several new difficulties here. First, the large parameter is T and this
cannot be divided up amongst a large number of processors. The bast that can be
done is to put one particle on each processor, unless the results from several
different sets of initial conditions are required, in which case decomposition into
particles and initial conditions permits efficient use of a larger processor array.
The second difficulty is due to the fact that every particle interacts with every
other.

In the direct method for evolving this system forward in time, the total force
on each particle, due to all the other particles, is computed, then each particle is
moved forward one time step and the process repeated. The computation is
dominated by the calculation of the forces, because this is proportional to the
square of the number of particles, whereas the timestepping grows only linearly
with the number of particles. Since every particle interacts with every other, a
geometric decomposition of the problem, in which the particles in different
sub-regions of space are associated with different processors, is no use. Instead,
each processor is given the job of following the time evolution of one subset of
the particles, which may be at widely scattered locations. In order to achieve load
balancing, each processor is given the same number of particles to look after.
This is illustrated in fig. 6. The algorithm may be mapped onto any network of
processors which incorporates a closed ring. The first step then is for each
processor to pick one of its particles and send its mass and coordinates to the
next processor around the ring. Next, each processor computes the force on its
particles due to the incoming 'travelling’ particle, and then sends the -information
about the travelling particle on to the next processor around the ring.

-
-

o)
O o/ 2
° nhode i+t
o /o G
O ° © node i
N
O

physical space
node i-1

Fig. 6: Algorithm for system with long-range forces.

64

5. Survey of Parallel Architectures

[5]1 1. Introduction

For many vyears the development of computers and the change in their
architecture has been of relatively little importance to the user. This is
‘understandable if the software produced by the user is readily transferred between
different computers, especially between the user’s current machine and a new
machine. Software compatibility over this extended period has led to the
development of large packages, which are the result of considerable investment.
The challenge that faces us today is that posed by the VLSI technology revolution.
The outstanding progress made in miniaturisation and micro~fabrication is
initiating radical changes in computer design, and to capitalise on the increase in
cost-effectiveness that this delivers, we are forced to reconsider our whole
software strategy.

It has been recognised for a long time that computation speed can be vastly
improved by using parallelism, indeed this was recognised by Babbage well before
the electronic computer was conceived. The earliest of these computers worked
bit-serially, using a single central processor. Thus if two numbers were to be
added together, the result was formed bit by bit. This mode of operation soon
gave way to a form of parallelism, in which parts of the representative words were
treated together, though the serial time sequence of computational instructions
was still operative. The user observed an increase in power from this innovation,
compounded with the increase due to the advance of technology; users were not
generally aware of the reasons for the improved performance, but were satisfied
as the old code ran quicker.

To sustain the advance in cost-effectiveness of computing, other aspects of
parallelism were incorporated, leading to the development of the pipelined
computers. In the execution of any arithmetic process there are a number of
distinct stages, and these various stages can best be done using different
specialised hardware. Therefore after the first stage of the arithmetic process has
been completed the hardware concerned can be made available to start another
independent process on new data. The various stages of the overall arithmetic
processes thus overlap, better use is made of the hardware and a greater speed is
attained on the problem being done. This progress has been achieved in the
vector supercomputers without the need for new user software, but users have
had to make certain minor changes, and the art of vectorising code is now widely
practised. To be able to vectorise code successfully one has to know what tasks
can be done independently, and therefore in parallel, but at this level there is not
very much difficulty and all difficulties can be left unsolved by leaving the old code
alone.

We have now reached the stage where any further real advance will entail

rethinking our software. Parallelism must be exploited on a much more extensive
scale in order to make use of the benefit of massive cheap replication of complex

66

circuit chips. The density of components that can be integrated on to a chip is
now so great that a single chip can perform all the electronic functions of a
computer. The development costs of a successful chip are very large as compared
with the cost of bulk production, and therefore any computer whose design
consists of a massive number of identical chips will clearly be the cheapest to
produce and to maintain, and if the design facilitates the building of machines of
varying sizes, a most viable product will result. Computers are now being
constructed with thousands of similar chips, interconnected in some way, and it is
a considerable intellectual challenge to find the best way of making. the
interconnections and of using the resulting computer. Architecture now impinges
on the avid user as it is the key to success with VLSI technology.

For the last seven years we. have been aware of this impending technology
revolution, and in 1979 the three avenues which seemed to us the most promising
for large-scale computation were the Motorola 68000, the FPS 164 ‘and the ICL
DAP. The 68000 was arguably in essence the first ‘computer on a chip’ produced
in bulk. At present the front-runner in this category is the transputer, its position
of eminence depending in good measure on its communications ability.
Multiply-connected FPS machines are the basis of 1BM's QCAP, the logical
progression being to FPS’'s T-series. Other companies have decided on concurrent
use of much more powerful processors, such as the CRAY X-MP and successors,
the HEP (company now out of business), and ETA’s GF-10. Hypercube connectivity
(see later) now enjoys much attention but the requisite software is in a state of
flux. The architecture of the DAP has its restrictions, and an attempt to overcome
them has led to the construction of the Connection Machine.

For a relative assessment of the available computers a number of aspects need
to be considered:

(a) overall cost of the computer,

(b} maintenance cost,

(c) running cost, including personnel,
(d) availablity of system software,
(e) ease of programming,

f) possibility of importing code.

We have recently engaged in benchmarking some front-runners as it is very
difficult to get a reliable estimate of performance from manufacturer’s
specifications. Many manufacturers measure performance in MIPS (million
instructions per second), a debatable measure of ability even for logic; Mflops
(million floating point operations per second) is a standard measure for scientific
computations, but may be misleading as an unattainable peak performance is
usually quoted. Nevertheless we have learnt that a peak performance is that
which in no circumstances can be exceeded.

[5] 2. Basic Architectures

{5] 2.1 SIMD parallelism

A very simple way to construct a massively parallel computer is to connect
processing elements (PEs) in a two-dimensional array, where each PE has four
neighbouring PEs. The ICL DAP (see later) is the best example of this construction
available today. The mode of operation is SIMD (single instruction, multiple

67

data-stream), in which the instructions of the program are broadcast to all the PEs
simultaneously, whereupon each PE executes the instruction using the data set
which is stored locally. Communications between the PEs are east/west or
north/south on the array, and in the DAP the array can be taken to have either
fixed or cyclic boundary geometry. On a DAP with 64x64 PEs, the longest
communications path is 32 steps east/west followed by 32 steps north/south,
involving 61 PEs which have no interest in the data received from one neighbour
which it has to pass on to another neighbour.

The machine architecture of the DAP is often described as having its PEs on a
torus. This can be understood from fig. 1, drawn for a 16x16 DAP. The lines in
this diagram can be thought of representing the connections between PEs, or

alternatively the areas on the torus can be thought of as the PEs. It is clear from

this figure that the longest path between processors does become rather large.

Fig.1: 16x16 processor torus

Some SIMD machines have eight neighbour connections, and others have a
hypercube geometry. A fuller description is given later.]

[51 2.2 Hypercube geometry

In an effort to reduce the number of processors which have to pass on
information in which they have no direct interest, computer architects have turned
their attention back to the binary hypercube construction as an interconnection
scheme for multi-processor machines. For a machine of N=2" processors, each
processor is connected to n neighbours. Thus processor i has communication
paths to all processors j such that the binary representations of i and j differ by 1
bit. The maximum data path length is n, a considerable saving over the
two-dimensional mesh geometry. A diagrammatic representation of any hypercube
beyond four dimensions becomes rather confusing, so a 4-dimensional example is
chosen for fig. 2. This is not in one of the forms often presented, but has been
prepared by the same plotting program which produced fig. 1. This is possible
because the 4-dimensional hypercube is topologically equivalent to the 4x4 DAP, a
coincidence that does not occur for higher dimensions.

68

f

[[

A modified form of hypercube geometry is used in the SIMD Connection
Machine (see later), but most of the machines with a true hypercube geometry are
MIMD.

Fig.2: 4-D hypercube or 4x4 torus

One aspect which is very important to consider in a large computer is
redundancy. If one small part of the computer fails, does this mean that the
whole computer should be inoperable? For the DAP or hypercube architecture this
would seem to be the case (but see AMT DAP later), but it is possible to build in
some redundancy to give a more robust machine. This is possible by including an
extra column of processors (actually 4 columns in the case of the MPP, see later)
into the array, so that when one PE fails, say the black one in fig. 3, the whole
column can be short-circuited in software.

Fig.3: Short-circuit of a column of PEs

[5] 2.3 MIMD concurrency

The Multiple Instruction, Multiple Data-stream machine. is the most general
possible. It has become a feasible proposition over the last few years due to the
cheapness of microprocessor systems. Numerous microprocessors can be linked
together in a loosely—bound network in which they all have their own independent
memory, or they can be combined as a tightly-bound multiprocessor in which
each processor can access any memory. The program which runs on a MIMD
machine is obeyed by all the processors, but each processor will be at a different
place in the program at any one moment. In order to contrast with the parallelism
of SIVID, the term concurrency is used in this context.

69

The range of MIMD computers can be roughly divided into those which are
constructed out of (a) large processors each of which could be the basis of a
powerful computer, (b) processors which occupy a board and which are equivalent
to a full mini-computer, and (c) single-chip processors which can perform the ful
range of requisite functions. Our main interest is in category {c) where the single
chip is the transputer, but the present chapter aims to touch upon the full range.
The possibility of a category (d) in which there are many processors on a single
chip is only viable at present with SIMD processing elements.

The architecture of computers in category (a) is often complicated in detail but
simple in essence. The number of large, powerful units in any machine is never
enormous, and so it is possible to have connectivity between any two units which
need communications. For category (b) this is not the case, and a design decision
must be made as to where to place the memory in relation to the processors.
One common solution is typified by the BBN Butterfly (see later) in which there are
memory units shared by the processors through a switch. This switch cannot be a
crossbar as a crossbar gives direct communication between each processor and
each memory unit. The switch shown in fig. 4 has two rows of 4x4 crossbars and
connects 16 processors one one side to 16 memory units on the other. This can
be extended to a switch between 64 processors and 64 memory units by using a
third row of '4x4 crossbars.

[[T]

1]
1]

[[T]

{11

Fig.4: Butterfly switch

‘Although switch technology is improving to the point where the number of
processors and memory units so connected can be in thousands, the fundamental
architecture is not optimum for category (c). As minitaurisation continues to give
a ‘higher device density it becomes more practical to locate the memory much
more closely to the processors. Of course this is an option for category (b) and is
implemented in hypercube machines. The optimum machine architecture depends
very often on the problem in hand, and it is for this reason that it is very attractive
to have a machine where the topology can be designed by the user, as in the case
of the Computing Surface. This freedom may well be the key to the successful
exploitation of massively parallel computers.

70

[5] 2.4 Local or Global Memory?

The question as to whether the memory in a highly parallel computer should
be local to the processors or globally available is fundamental for the modern
computer designer. The BBN Butterfly design is one where the processors access
global memory through the switch, but each processor does have a cache of local
memory otherwise it would be using the switch repetitively for basic data.

The ICL DAP has its memory local with each processing element, but there is
an' efficient way for each processor to access global memory when needed
through the broadcasting mechanism. : :

Thus there is no one clear answer; each computer is a compromise in this
respect, although it is usually quite clear as to which category the particular
computer is in. .

[5] 3. Some Specific Computers

The following gives some information about a selection of machines in various
categories. The list is by no means exhaustive. ’

[5] 3.1 SI1SD - pipeline processors

These are the computers most favoured for central facilities, such as the
CRAY-XMP. In these computers, mathematical operations are pipelined and
performed on data which flows through the processor in a stream. In the
computers here described the data stream is a single vector stream so the
operation mode is SISD. A great advantage of these machines is that old serial
code can be run without modification, users then being able to improve
performance by 'vectorising’ the costly sections of code. This is what makes them
ideal for a large community, especially as they are more cost-effectiver when
vectorised than the ubiquitous VAX which we do not consider here. The running
costs of these computers is high as the power consumption is a large fraction of a
Mwatt, much of this being used in cooling. The complexity of such a facility is
demanding in maintenance staff, and an extensive operation staff is needed as for
any general purpose computer.

There are computers which compare very favourably with those presented in
the following three short sections, and have the advantages that go with smaller
size. The most notable is the FPS 264. Although omitted here, it should not be
passed over when searching for the best general purpose computer of this
architecture.

[5] 3.1.1 CRAY X~MP, CRAY-2, CRAY-3

The X~MP (eXperimental Muiti-Processor), introduced in 1982, is available with
1, 2 or 4 processors. Each processor has a 9.5ns clock and has a peak
performance of 400 Mflops. The 4 processor version has 64 Mbytes of memory.
Also available is a solid-state storage device (SSD) with memory sizes up to 8
Gbytes, and a new disk drive (DD-49) which has 1.2 Gbytes capacity and 10
Mbyte/s bandwidth. Transfer to and from the SSD is via one or two 1 Gbyte/s
channels. The prototype X-MP/48 can‘ achieve a 3.8 speed-up and so reach the
Gflops range. The cost of a 4 processor X-MP is around . $20M which, at 50%
peak, should deliver 0.8 Gflops.

71

The multi-processor CRAY-2 has a new vector register architecture and uses
liquid-immersion to obtain a 4ns clock. It is about as powerful as the X~-MP but
has a much larger memory. The CRAY-3 is a GaAs version of the CRAY-2, being
developed for the 1990s. It will be,one cubic foot in size, have 16 processors with
2ns clock and memory twice as fast as that in the CRAY-2, giving a speed-up over
this computer by a factor of 8.

[5] 3.1.2 CYBER-205, ETA GF-10

The CDC CYBER-205 evolved from the STAR-100. It is available with 2 or 4
general purpose pipelines, a 20ns clock and up to 128 Mbytes memory with 80ns
access time. It is highly competitive with the CRAY-1, being faster for large
vectors but slower for small vectors. A re-engineered 2-pipe CYBER-205 is the
processor for the GF~10, which is to be constructed with 8 such processors by the
CDC~funded Engineering Technology Associates company. Each processor should
run about 3 times faster than the CYBER-205, will be made from VLS! CMOS chips,
and have a 5ns clock and 256 Mbytes local memory. The whole computer, which
should occupy a 5 foot cube cooled by liquid nitrogen, will have a further 2 Gbytes
of shared memory. The company aim is availability of GF-10 in 1987 with a peak
performance of 10 Gflops.

[5] 3.1.3 Facom VP, Hitac 5-810, NEC SX and MITI's plans

The three largest Japanese computer companies have been developing
computers comparable with the CRAY and CYBER series. A detailed comparison is
out of place here. Fujitsu's Facom VP-100 and VP-200 peak at 250 and 500 Mflops,
Hitachi's Hitac S~810/10 and /20 are marginally faster at 315 and 630 Mflops, the
most powerful being NEC's SX~1 and SX-2 at 570 and 1300 Mflops. These three
companies, in collaboration with Oki, Toshiba and Mitsubishi, are currently involved
in MITl's (Japanese Ministry of International Trade and Industry) National
Super~Speed Computer Project. This is a five year programme of R&D aimed at
producing a 10 Gflops computer system with 1 Ghyte of semiconductor memory
and 100 Gbytes of disk storage by March 1990.

[5] 3.2 SIMD - processor arrays

) These computers are constructed as described above arrays of identical

processing elements {PEs) operating in lockstep performing the same operation on’

different data.

[5] 3.2.1 Distributed Array Processor, DAP

The DAP, made by International Computers Limited, was begun in 1872 and the
first production machine was installed in 1980 at Queen Mary College, London. It
comprises a 64x64 array of PEs, each with 4 Kbits of associated memory (16 Kbits
now at QMC), and is a memory module of a 2900 ICL mainframe which acts as a
host. The PEs are two-dimensionally connected to the four nearest neighbours on
a torus and access highways to them, along the two dimensions, contribute greatly
to the DAP’'s performance. Each PE can only perform bit-serial arithmetic, so
arithmetic operations must be done in software offering a word-length flexibility
unavailable in conventional computers. The first generation DAP is SSI/MS! with

72

[5] 3.2.4 Massively Parallel Processor, MPP

Made in VLS| by Goodyear Aerospace Corporation, this SIMD computer has
132x128 bit-serial PEs (132=128+4, the 4 giving built-in redundancy) each with 1
Kbit memory. The high level language chosen for this machine is parallel Pascal.
The power is projected to be 200 Mflops, but we have not been able to test this.
The MPP was designed for NASA, and a machine is currently in operation.

[5] 3.2.5 Cellular Logic Image Processor, CLIP

The pilot model (CLIP3) was built in University College, London, in 1973 and

then the CLIP4 system in 1979. This is a 96x86 array of PEs each with 32bits of

memory and connections to the eight nearest neighbours. The four-phase clock
cycle is 400ns. It is used for image processing and pattern recognition. It has
been redesigned with custom chips as CLIP7, a 4x512 array of PEs, each with 32
Kbits of memory, running with a 200ns clock. The programming language is an
extension of C. This is now a company product of Stonefield Ltd. of Swindon, UK.

[5] 3.2.6 Adaptive Array Processor

The Japanese Nippon Telegraph and Telephone Public Corporation (NTT) is
building an LSl Adaptive Array Processor. The prototype will use 128x128 2u
Si~gate p-well CMOS LSI chips, each chip containing an 8x8 PE array with
peripheral circuits and each PE having a 96bit memory. There will be an eight-
nearest-neighbour PE connection network with hierarchical bypasses, allowing
various types of two-dimensional data processing. The clock cycle will be 55ns,

and power consumption 1.1W per chip.
14

[5] 3.2.7 The GEC GRID

The General Electric Company (UK) is building the GEC Rectangular Image and
Data processor. It is to be a 64x64 PE array with each PE having 64bits of on-chip
(register) memory and 64 Kbits of off-chip (main) memory, and being connected to
its eight nearest neighbours. This arrangement probably gives the best of both
worlds: a simple PE with a small fast ‘cache’ memory (as in CLIP and AAP) backed
up by a large amount of slower memory (as in DAP, CM and MPP). The 64x64
array is to be made up of 16 boards each containing 2x4 GRID chips and their
off-chip memory, each chip containing an 8x4 array of PEs and their associated
on-chip memory, an edge control register, a histogram counter and the peripheral
circuitry for instruction decoding and zero detection. The on-chip edge control
register defines the PEs which form the edge of the .array, thereby allowing the
array to be connected in a variety of topologies: linear, cylindrical or toroidal.

The GRID system will be hosted by a minicomputer, running the UNIX operating
system. Thus the GRID will be programmed in C, extended (initially by adding a
preprocessor) to support parallel instructions. These are implemented, as for the
DAP, by means of subroutine calls. Responsibility for the project has now been
transferred to Marconi.

74

[5] 3.3 MIMD - multi-processors

[5] 3.3.1 BBN's Butterfly and Monarch

Boit, Beranek and Newman (BBN) have developed the Butterfly -Parallel:
Processor which is an MIMD tightly-coupled, shared-memory machine consisting
of up to 256 68000 microprocessors, each with 1 to 4 Mbytes. of memory,
interconnected via a Butterfly switch. The single-board processors can be
upgraded to 68020/68881 which vyield 0.5 Mflops each. The Butterfly switch, which
uses packet switching (see fig. 4), is made up from. 4x4 switching. elements
implemented as customn VLS| chips with 8 on a board forming a 16x16 switch.
Machines with more than 16 processors have redundant paths. Interprocessor data
transfers occur at 32 Mbyte/s and remote access is claimed to take less than 4
microseconds. Y

The Monarch Multiprocessor, BBN's future MIMD shared-memory machine is
designed to have 8192 processors, 1024 memories (4 to 512 Mbytes) and a 16384
port butterfly switch with bandwidth of 2 Gbyte/s. The target performance is 3
Gflops, to be achieved by the end of 1987. Many of the developments taking place
with the Monarch are currently being used by BBN to upgrade the Butterfly.

[5] 3.3.2 The Heterogeneous Element Processor

Denelcor of Denver, Colorado manufactured the MIMD Heterogeneous Element
Processor which consists of up to 16 process execution modules (PEMSs), each with
its own data memory bank, connected to a switch. Each PEM can access its own
data memory bank directly, but access to the other memories is through the
switch. A PEM may run up to 64 processes concurrently. The switch is a
high-speed, packet-switched network. Process synchronisation is achieved in
hardware by the use of so-called asynchronous variables; they cannot be read
from until they are full or written to until they are empty. Although Denelcor are
now out of business, HEPs are still available for purchase.

[5] 3.3.3 The IBM 2CAP

The Loosely Coupled Array of Processors has been built ‘by Professor Enrico
Clementi at IBM Kingston. This distributed system consists of 10 FPS~164 attached
array processors hosted by an IBM 3081 with an expected peak performance of
110 Mflops, to be increased to 550 Mfiops by the addition of 2 FPS MAX boards to
each processor. |BM have expressed a willingness to market this product, 4CAP-1,
and have installed a similar system at IBM Rome. 2CAP-2 now exists at Kingston
and has 10 FPS-264s hosted by an 1BM 3084, peak performance being 330 Mflops.

[5] 3.3.4 The Ultracomputer and the RP3

New York University’s Ultracomputer is a MIMD shared-memory machine in
which the processors and memories are separate, but are interconnected through
an Omega switching network. This switch is such that each processor is at the
top of a binary tree whose leaves are the memories and vice versa. It is pipelined
and packet-switched.

75

An 8 processor prototype was built and a 4096 68000 processor version was
planned to vield a 10 Gflops machine, but the Ultracomputer project has now
become integrated with the IBM RP3 (Research Parallel Processing Project) and the
first machine is to have 64 IBM 32bit microprocessors, 2 Gbytes of memory and a
VLSl omega switch giving a possible 100 Mflops in 1987. This is to be followed by
a 512 node version. IBM now state that this is not a commercial product though it
clearly has potential as a rival to the Butterfly.

[5] 3.3.5 Myrias 4000

The Myrias Research Corporation’s Myrias 4000 distributed memory MIMD
system will offer configurations of up to 64K processors (measured as 64 Krates
where 1 Krate = 1024 processors), giving an average performance of around 1.6
Gflops (32bit arithmetic). The minimum primary memory is 8 Gbytes and can be
upgraded to 32 Gbytes. The processors each consist of a 68000, 128 Kbytes 150ns
dRAM and a high speed DMA interface. 8 processors together form a board, 16
boards populate a cage, 8 cages are housed in 1 Krate, 4 Krates form the minimum
configuration - a 64x64 array with 512 Mbytes of memory. They also have 1
Gbyte disk storage and /0O bandwidth of 80 Mbyte/s per Krate. System is
expandable in 1 Krate increments. An optical communications system is a feature
of this machine, but it is not clear whether this will overcome the communications
problem better than standard electronic links. Processing power will increase (by
5) when the 68881 is added and memory will increase (by 4) when 256K dRAM
becomes available.

[5] 3.3.6 Caltech hypercube

Geoffrey Fox and Charles Seitz of the California Institute of Technology
designed the Caltech Hypercube comprising an array of microprocessors with local
independent memories. Nearest-neighbour connections are implementer! by
means of mailbox communications which operate as follows: a processor waits on
a mailbox until the data is put in by the neighbour, and a processor waits on a
mailbox until it becomes empty if it wishes to deliver data to it. The processors
are configured as a binary hypercube.

The first machine (after a four node prototype), which was completed in
October 1983 and called the Mark | Hypercube, has 64 nodes, each of which is an
Intel 8086/87 microprocessor with 128 Kbytes of memory on a single board, giving
a total of 3.2 Mflops. The Mark Il Hypercube (completed in September 1984) is as
Mark | but with 256 Kbytes of memory. It exists as one 128-node or four 32-node
machines, and has an Intel 310 workstation as intermediate host. The present
Mark Ill Hypercube is to be firstly 32 then 256 and finally up to 1024 nodes, each
of which contains a Motorola 68020/68881 as main processor, another 68020 as
1/0 processor plus Weitek scalar floating point chips (1064 multiplier and 1065 ALU
- 12 Mflops for 32bit operation) and 4 Mbytes of memory. DMA will be used as
the communication method for message passing.

(51 3.3.7 The FPS T-series
- The T-series are homogeneous parallel computers with a modular structure

based on hypercube geometry, so that a wide range of system sizes is potentially
possible. The basic unit is the module, or T-10, consisting of eight node boards

76

connected together as a 3-dimensional cube, a system board and a disk. The
system board is connected to each of the node boards via a linear chain, to the
disk, and to a front end computer which is a MicroVAX running VMS. This system
network is distinct from the hypercube interconnections between nodes.
Additional communication links on the system and node boards allow modules to
be connected together; the system boards are connected in a ring, the node
boards are connected into an n—dimensional cube (hypercube) where n < 14. The
most common configuration at present is the T-20, which forms a single cabinet,
consisting of two modules in which the 16 nodes are connected as a
4~-dimensional cube; the T-100 consists of four cabinets in which the 64 nodes are
connected as a 6-dimensional cube (T-numbers represent the number of nodes in
octal).

Each node board is a powerful vector computer in its own right, with a peak
64-bit performance of 16 Mflops. The original node design involved a Weitek
coprocessor chip set fed from 1Mbyte of video RAM controlled by a transputer, the
transputer being also responsible for communications. Potential (peak)
performance ranged from 256Mflops to 60 Gflops or more, depending on the
number of nodes. It seems likely that this design will evolve to a more balanced
unit with a wider communications band~width and more memory.

[5] 3.3.8 Intel’s personal supercomputers, iPSC & iPSC-VX

The iPSC/d5 (d6 or d7) system contains 32, (64 or 128) nodes hosted by an
Intel 310 workstation. Each node consists of a 80286/80287 microprocessor with
512 Kbytes of memory and 7 bidirectional channels (each giving 10 Mbit/s data
transfer). The performance/price ratio of the d7 is 16 Mfiops/$M.

The iPSC-VX is Intel’s machine in competition with the FPS T-series. It is a
hypercube built from their 80286 and 80287 processors but with vector processors
at each node. The ALU is pipelined with a 100ns clock and 1 Mbyte of 250ns
dynamic RAM plus 16 Kbytes of 100ns static RAM. For 32bit arithmetic each node
is theoretically capable of 20 Mflops. These computers should be being shipped in
1987.

[5] 3.3.9 Ametek System 14

A hypercube is formed of from 16 to 256 nodes and is connected to any VAX
(running Unix or VMS) as a host via a 1 Mbyte/s parallel interface. Each node
consists of a 80286/80287 microprocessor and 1 Mbyte of memory with 8
bidirectional channels (each 3 Mbyte/s). It runs the Ametek Hypernet Operating
System (HOS), as will the Caitech Mark Hl Hypercube. First machines were
projected for early 1986 costing about $100K for 32 nodes.

[5] 3.3.10 NCUBE

One to four boards, each containing 4 processors, form the 8 Mflops
NCUBE/four which has an IBM PC-AT bus interface; 1 to 16 boards, each
containing 64 processors, form the 500 Mfiops NCUBE/ten. Each processor
consists of an NCUBE custom VLS! chip which contains a 32bit processor, a 16bit
error correcting memory interface (to 128 Kbytes of memory) and 22 independent
DMA communication links (11 in and 11 out) with a claimed data transfer rate of

77

1 Mbyte/s. One pair of links is used for system 1/0. There are eight 90 Mbyte/s
system |/O channels - one for each set of 128 nodes connected via /0 boards.
One of the /O boards is a host board containing an 80286/80287 with 4 Mbytes of
memory which runs a Unix style operating system called Axis, supporting 8 users
and facilitating allocation of subsets of the hypercube. (Each node runs a simple
operating system called Vertex.) The other /O boards may do other things such
as graphics.

[5] 3.3.11 Sequent BALANCE and Alliant FX-series

A number of multi~processor systems have recently appeared which aim to
provide improved performance through concurrency, in a way which is essentially
transparent to the user. This is typically achieved by tightly-coupled processors
sharing common memory. Examples are the Sequent BALANCE and the Alliant
FX-series. As yet such machines have a modest number of processors, roughly up
to 20, and as yet do not achieve very high performance, but future upgrades may
meet this challenge.

[6]1 3.4 Data-flow and systolic architectures

Computers of these architectures do not appear to be competitive for
large-scale scientific computing. Nevertheless this field of development must be
monitored especially as Japan's Electrotechnical Laboratory (ETL) is developing a
large dataflow computer called SIGMA-1 which contains 256 PEs and should
achieve 100 Mflops.

[5] 3.5 Transputer-based systems

The INMOS transputer is a 250,000-component (1.5u CMOS) VLS! chip which
contains a 10 MIPS RISC processor, 50ns static-RAM memory and four 20 Mbit/s
bidirectional communication links. It can address up to 4 Gbytes off-chip memory
with a bandwidth of 25 Mbyte/s.

On October 1st 1885, the INMOS T414 transputer went on sale for about $ 500,
It has a 32bit processor and 2 Kbytes memory. There have been considerable
developments since this time, and fuller details of the extended range of
transputers is given in chapter 6.

The transputer is programmed in occam which is the native language of this
device, 'a language specifically designed to facilitate communications and
implement concurrency.

[5]1 3.5.1 INMOS Transputer Evaluation Module

INMOS are constructing a range of boards, one of which has 4 Transputers
hard-wired in a square. When coupled to an IBM PC the result is an evaluation
tool which is very useful for familiarisation and occam program development and
constitutes a powerful computing device.

78

[5] 3.5.2 The Esprit Project

The development of the T800 floating point transputer has been partially funded
through an Esprit project which involves RSRE, Thorn-EM! and Southampton
University in the UK in addition to Inmos and European collaborators. This is to
form the basis of a machine comprising 256 or more transputers, where the
architecture, we understand, is based on a multi-transputer supernode.

[5] 3.5.3 ALICE

The Applicative Language Idealised Computing Engine is a highly parallel
computer being designed and built at Imperial College out of 16 or 64 transputers.
It is primarily for the . parallel evaluation of declarative languages by graph
reduction - hence it is termed a reduction machine, Declarative languages are
languages with no assignment, so no side-effects, and no state (program history).
They come in two varieties: functional (or applicative) and relational (or logic).
Functional language programs comprise a set of data declarations, a set of
functions to be performed on the data and a top-level expression whose
evaluation produces the resuit of executing the program. Relational language
programs comprise a set of assertions (facts), a set of rules and a query whose
satisfaction is the result of the program.

[5] 3.5.4 The Meiko Computing Surface

This computer, the subject of the next chapter, is designed to make use of all
the facilities of the transputer. A great advantage of this machine lies in its ability
to be electronically reconfigured, so that at one moment it can mimic a hypercube
and the next moment it can mimic a DAP or MPP. ’

79

6. The Computing Surface

[6] 1. The Transputer

The INMOS T414 transputer is a 1.5y CMOS VLSI chip which contains a 10
MIPS, 32-bit RISC processor, 2 Kbytes of on-chip 50ns static RAM and four 20
Mbit/s bidirectional communication links. It can address up to 4 Gbytes of
off-chip memory with a bandwidth of 25 Mbyte/s. The RISC architecture allows
context -switching to be very fast, supporting efficient impiementation of
concurrent program execution on a single transputer. The INMOS links support
communications between programs running on separate transputers. The serial
protocol requires only two wires per link in each direction, the respective pins of
one transputer being directly connected to those of another. The point-to~point
communication links allow transputer networks of arbitrary size to be constructed,
with the advantage that the communications bandwidth does not saturate as the
size of the system increases. Each transputer in a system uses is own local
memory. Overall memory bandwidth is proportional to the number of transputers
in the system, in contrast to a large global memory, where the use of additional
processors tends to degrade memory bandwidth.

The transputer is designed to implement the process model of concurrency,
expressed through the occam programming language, which was developed in
parallel with' the hardware. Occam is a high~level language based on
communicating sequential processes which, although themselves sequential, may
be run in parallel with other such processes. Communication between parallel
processes is effected by uni-directional channels, which may connect processes
on the same processor or on different processors. Each INMOS link implements
two such channels, one in each direction. We stress: that the transputer can be
programmed in other high level languages such as Fortran, but that if concurrency
is to be exploited, occam should be used as a harness to link modules written in
the selected language.

The T212 Transputer is a 16~bit transputer providing up to 10 MIPS processing
power with 2 Kbytes of on-chip RAM and four 20 Mbit/s links. The memory
interface provides 64 Kbytes of direct address space with a maximum data rate of
20 Mbyte/s.

The M212 Transputer is a disk controller. It contains a 16-bit processor, two
standard links, 4 Kbytes of ROM and 1 Kbyte of RAM, an interface to external RAM
and two disk interfaces.

The most interesting member of the transputer family from the viewpoint of
large-scale scientific simuiations is the floating—point version of the transputer, the
T800, with an integral hardware 64-bit floating point unit capable of a sustained
performance of 1.5 Mflops, and pin-compatible with the T414. The TB800 was
announced in November 1986 and silicon now exists in engineering sample
quantities. It features 4 Kbytes of on-chip RAM for 80 Mbyte/s data rate, four 20
Mbit/s INMOS links, and an external memory interface with bandwidth of 26.6
Mbyte/s. The floating point unit has been designed to operate on both

80

single~length (32 bit) and double-length (64 bit) floating point numbers to the
ANSI-IEEE 754-1985 floating point standard. The T800-20 (20MHz part) is claimed
to achieve more than five times the performance of the Motorola
MC68020/MC68881 combination on the Whetstone benchmark.

[6]1 2. The Computing Surface

The Computing Surface is a computer designed by Meiko Ltd. in order to
exploit the power of the transputer on compute-intensive applications.. The
transputer itself was inspired by the conclusion that the best way to achieve highly
concurrent processing is through communicating sequential processes, as
proposed by Professor C.AR. Hoare at Oxford. The goal is to achieve a balance of
computation and communication without jeopardising the integrity of the result of
the computation. Various topologies were considered for the construction of a
large computer, such as rings, grids, hypercubes, cylinders, toroids, but all were
faulted for the same reason. All such topologies are compromises, and all restrict
the software engineer in some way. Thus it is advantagecus to have a system
where the optimum topology can be implemented at will, and it is this flexibility
which is the goal of the design of the Computing Surface.

Meiko is a start-up company founded by former members of the INMOS team
responsible for the design and implementation of the transputer itself. The Meiko
Computing Surface is a modular, reconfigurable transputer array. Physically, a
Computing Surface is contained in one or more modules or cabinets. Modules
may be populated with a mixture of boards (elements) chosen according to the
requirements of the user. The M40 module has 40 slots, at teast one of which is
occupied by a local host board (see fig. 1) carrying a T414 (T) transputer providing
a network interface (N 1), 3 Mbytes of error-checked RAM and IEEE488 or SCSI
interface, plus dual RS$232 interface. The local host performs house-keeping tasks
such as monitoring for hardware errors, control of the electronic routing network,
hardware reset and hosting the interactive program development environment,
which supports file access via the IEEE488 or SCSI interface, compilers, topology
configuration software and the Computing Surface loader/bootstrapper.

[supervisor bus interface

3 Mbytes RAM

IEEE
488

LIy

Fig.1: Local host and interface board

DUART

81

Other slots may be occupied by standard boards, shown schematically in figs.
2, 3 and 4. The quad computing element carries 4 transputers, currently T414s,
each with 256 Kbytes of error checked RAM, as in fig.2.

supervisor bus interface
256K 256K 256K 256K
RAM RAM RAM RAM
T T T T
" oo
/
network
interface

NZ

Fig.2: Quad computing element

The graphics display board, fig. 3, contains a single T414 plus 1.5 Mbytes of
dual-ported video memory and is specially designed to give high performance.

supervisor bus interface

1.5 Mbytes framestore
eg 1.5M 8-bit pixels
or 0.5M 24-bit pixels

Fig.3: High performance display elerment

Mass storage is given by the mass store board, fig.4, which also features a
single T414 but with 8 Mbytes of error checked RAM and a 2 Mbyte/s DMA

controlled SCSI disk and peripheral interface.

82

[6] 3. The Edinburgh Computing Surface

The Computing Surface in Edinburgh University, which is supported by the
Department of Trade and Industry and the national Computer Board, is built around
40 worker transputers. It is being used for research into parallel processing and
as a demonstrator. It is hosted by a microVAX Il running VMS, which provides file
storage (650Mbyte hard disk), backup (6250 BPI tape drive), and networking
services. The system services and {/O are controlled by the host board. Advanced
graphics capability is provided by a display board, giving bit-mapped graphics at a
maximum screen resolution of 512 x 1024 at 24 bits per pixel, and is currently
configured as 3 banks each of size 576 x 768 at 8 bits per pixel.

Janet

Vax

Compaq

Host Board

Graphics

Link Switch

40 x
(Transputer
+256K dram)

Supervisor bus

Fig.5: The Computing Surface.

Each of the 40 transputers has 2K of fast on-chip SRAM and 256K of off-chip
DRAM (fig. 2); their links are all taken to the backplane for hard configuration. This
is to be upgraded by the installation of an electronic switch, which is now in
production. The inter-processor links are all rated at 10Mbits/sec.

Each of the worker transputers is connected via the supervisor bus to the host
board, giving them low bandwidth external communications capability. The
supervisory mechanism is independent of the transputer links; at present it is used
for system services, error detection and forwarding debugging messages.

84

Occam 2 code is compiled on the CS host board, which is file-served by the
microVAX. Fortran 77 is currently under test, and will be released in the near
future.

The Computing Surface provides three unique facilities,
1) an environment for the development of parallel algorithms,

2) a high performance attached processor for the' microVAX ~ the Computing
Surface runs at up to 80 times its speed,

3) advanced graphics facilities in close proximity to real computational power,
capable of pumping data at the graphics board at up to 5Mbytes/sec.

{61 3.1 System Configuration

The immediate question to be addressed is how to build a single array
processor from a box of transputers, given the flexibility afforded by the links.

In the absence of the electronic switch the configuration has to be hard-wired.
All of the transputer links (4 per chip) are taken to the backplane, where they are
connected together with short twisted pairs to create the desired configuration. In
the early stages of our work, the machine was connected up first as a hypercube
and a ring, and then as a 10x4 array. Standardising on the latter allowed us to
develop software while permitting the users a wide variety of array architectures.
When the electronic switch is installed the machine configuration will be matched
to the PLACEMENT specification.

Fig.6: Configuration of the Computing Surface as a 10x4 array

The edges of the array have been wrapped around to form a torus. It is
possible to map chain, ring, grid, box-girder and hypercube configurations onto
this torus without changing any of the link connections.

85

[6] 3.2 The Occam Programming System (OPS)

The Occam Programming System is an environment from within which' occam
programs can be written, compiled and run. It runs on the CS host board,
file-served by the microVAX, and also on the PC-based workstations. The editing
facilities are also available on the microVAX alone, for up to 8 simultaneous users.

Occam allows the user to develop a heirarchy of processes that reflect the
structure of the application, and OPS allows a heirarchical representation of a

program via a mechanism known as folding. Folding is analogous to taking a
document with headed paragraphs and then folding it so that the text is hidden,

leaving only the headings. !

e . |
| ¢]

Fig.7: Folding up text.

Folds can be opened to reveal (in context) their contents, or closed, leaving
only the header visible. Folds can also be entered, in which case only the
contents of that fold are displayed, not its surroundings (context). Folds can be

nested to any depth.
There are two approaches to the use of folds:

1) Procedural. Having written a procedure it can be checked and documented
and then folded away, represented only by its header. This approach is
suitable for a library of procedures.

2) Top-Down Program development. The folding editor encourages Top-Down
development of code. A high level program description can be written using
occam constructs and folds (which may be empty) representing distinct tasks
and their inter-relationships. e.g.

86

{{{ test application
PROC job(CHAN in, out,, VAL INT)

... system code
w.. libraries
... declaration of variables
SEQ
... initialisation
WHILE running
SEQ
... task 1
PAR
... task 2
... task 3
... task 4
... task 5

in

It should be noted that the editor marks closed folds by ... followed by the
fold header. The start of an open fold is marked by {{{ and the header, and the
end by }}} on a line of its own.

At this stage the software engineer can decide upon the channels needed for
communication between processes running concurrently. Having written this
specification, the details of each of the tasks can be filled in in the same way,
representing the structure of each task in terms of constructs and subtasks. This
process is repeated down to the lowest level of fundamental processes and library
procedures.

[6] 3.2.1 Files and Folds

Files are created within OPS by folding up text and filing the fold. This creates
a file whose name is the first word in the fold header, with .TSR as the default
extension. To create a file with the name FRED.TXT you should type FRED.TXT on
the fold line prior to filing.

Existing files can be attached to folds. To do this create an empty fold, type
the filename and file the fold. The message “File attached to fold” appears when
the process is complete. If the contents of an existing file are to be used as the
basis for a new file then the old file should be attached to a fold, unfiled, the name
changed on the header, and then refiled. .

OPS makes extensive use of folding:

1) When you start up OPS you enter a toplevel fold (called TOPLEVEL.TOP), from
which all work is accessed. i)

2) All help information and utility parameters are held in folds.

87

3) Most importantly, folds have attributes associated with them. Folds can be
marked as SC for those which contain procedures for separate compilation,
PROGRAM for those which contain compiled procedure definitions and
placement information, EXE for those which contain procedures suitable for
running within OPS, or COMMENT for those whose contents are to be ignored
by the compilers.

[6] 3.2.2 Using OPS on the microVAX

The OPS environment is available on the microVAX, but only for writing and
editing code. The compilation utilities all require the version of OPS that runs on
transputer hardware which is either the CS host board or the PC+B004 workstation.
To start up OPS type VOPS TOPLEVEL.TOP and this will enter the topleve! fold.
This fold contains all the references necessary to use the Computing Surface -~
system code, libraries and demonstration programs.

[6] 3.3.3 Using the Computing Surface

A program for the Computing Surface consists of a set of procedure
definitions, and a description of how these procedures are to be distributed over
the transputers available. The code to run on each processor must be separately
compiled, and referenced within the PROGRAM fold, together with the placement
information This fold must be configured and extracted before the program can be
loaded and run.

To do this you must log on to the Computing Surface microVAX, allocate the
machine by typing getmeiko in the occam default directory, connect up the
terminal by typing reset and then term and load OPS2 onto the host-board. Do
this by selecting the “load occam 2 code” option (press <RETURN> twice to do
this) and when prompted for a file to load type OPS2. The screen will fill with
dollar signs as the code is being loaded. When prompted for a terminal type,
enter vt100 and press <RETURN>. The environment will now appear the same as
VOPS. To compile and then configure the program follow the instructions in the
next section.

[6] 4. Utility Packages

There are two packages of utilities available, the Program Development
Package and the Transputer Development System. Their organisation and use is
the same on the microVAX and the PC+B004 systems. This section describes how
to use them to run an occam 2 program on the Computing Surface. The Program
Development Package contains a checker, a compiler, a linker, and utilities for
attaching attributes to folds and for searching files. The Transputer Development
System contains the utilities for configuring programs for the Computing Surface,
running them and locating user software errors.

To get a utilities package or a user program (such as the terminal emulator)
point the cursor at it and type FUNC g. Only one package and one user program
can be held at a time.

To run a user program (normally an EXE), get it (as above) and type FUNC r.
Control will return to OPS when (and if) it terminates. You may find it useful to
make keyboard ? any as the last line in such a PROC. This will leave the output
from the program on the screen until something is typed; the output will disappear
when contrc! returns to OPS.

88

Many of the -utilities have a parameter fold which specifies the optuons for the
utility. The first time you invoke such a utility its parameter fold will ‘pop up’ with
all the options set to their defauits. You can change options at this point.
Subsequently, the parameter fold will not appear unless you explicitly ask for it.
To change options at this ‘point ENTER the parameter's fold -by typing FUNC s,
select the fold required, ENTER it and alter the options. Return to the text by
typing EXIT FOLD twice. You can alter options in the parameter’s fold at any time
other than while a utility is running.

[6] 4.1 The Program Development Package

The most important members of this package are the compilers, but you will
need to use several of the other utilities first, so they will be described first.

Search and Replace: FUNC 8 and FUNC 9

To search for a string, type FUNC 8 and the search and replace
parameter fold will open. Type in the search and replace strings and type
EXIT FOLD. The cursor will move to the next occurrence of the search string
in the fold currently open, or in any fold within it. To replace this
occurrence type FUNC 8. There is no global search and replace; to do
multiple search and replace you must type FUNC 8 and then FUNC 9 over
and over again. Like the other utilities, the search and replace parameter
fold only ‘pops up’ the first time you use it. To change the-parameters
subsequently you have to enter the parameter fold (as described above). The
search and replace utilities are also available in VOPS.

- Make Foldset: FUNC 7

The Make Foldset utility, when applied to a source fold creates another
fold around it with special attributes. You select (via the usual mechanism)
whether you want to give the fold SC (separately compilable), EXE (PROC
suitable for running within OPS) or COMMENT (to be ignored by the
compiler) attributes. The utilities will create other filed folds within this
outer fold: i) .

Make Comment: FUNC Ov ‘

This comments out a fold so that it will be ignored by the compiler.

Check: FUNC 1

This checks a fold for syntax and semantic errors. The checker performs
the same syntax checks as the compiler, but does not go on to generate
code; it is much faster than the compiler at doing these checks. The checker
can be applied to any filed source fold. It reports the first error, positioning
the cursor where the error has occurred. BN : .

The checker and compiler share a parameter fold. It will appear the first
time either is used. To make subsequent changes you must enter the
parameters fold. These options include:

Usage Checking. Usage of channels, and the indepéndence of
concurrent processing is checked if this option is set TRUE
Unfortunately. the current release has several serious problems with
this option. It is set FALSE. by default. It can however be used for
small procedures under most circumstances.

89

Range Checking. Standard array bound checking; some programs. will
go faster if Range Checks is set FALSE, but don't do it -until you know
it works.

Extended Data Types. Set this FALSE if you aren't going to use the
types REAL32, REAL64, INT16, INT32 or INT64, as it will speed things
up during compilation, otherwise leave it TRUE.

Protocol checking. Not Implemented. Leave it FALSE.

Locate Error. If set TRUE this will allow the Locate Error utility to find
the point in the program responsible for a user software error, if one
occurs.

Compile All. Compiles the current. filed fold and all separately
compiled folds referenced within it. Don't use it if you include
references to system code, as it will try to compile them, and this will
fail as you don‘t have write access to the directories in which such
files live.

Force Pop Up. If set TRUE then the compilation options will be
presented every time you invoke a compilation utility.

Compiler: FUNC 2 and FUNC 4.

To compile a filed source fold first mark it as separately compilable, SC,
or EXE if it is to run within OPS. If this fold contains other uncompiled SCs
then use the 'bottom up’ compiler FUNC 2 as this will search down. through
the fold structure looking for anything that needs compiling. The Unit
Compiler FUNC 4 does not do this, it simply compiles the fold selected.

Both compilers create several separate new folds containing code, linking,
and debugging information, all within the compilation fold. These folds are
filed automatically; they are not readable. Use the Compilation Info utility
FUNC 6 to create a textual description of their contents. The compiler
shares a parameter fold with the checker; see above for details.

If the source of a compiled fold is altered then the compalatlon fold is
marked as invalid, and must be recompiled before it can be used again. Use
the Fold Info key FUNC f to check on the status of a fold.

Linker: FUNC 3

Occam programs need to be linked before they can be run. The linking
process involves including within the code, references to library routines.
Programs for the Computing Surface are linked automatically during
Configuration, as are EXEs that are compiled with the '‘bottom up’ compiler.
If an EXE is compiled wuth the unit compnler then it will have to be linked
'usmg FUNC 3.

[6] 5. The Transputer Development System Utilities -
This section describes the utilities that enable you to configure the program for

the Computing Surface, and then load the code onto it. You should get the
terminal emulator at the same time as the TDS package.

90

Make Program: FUNC 7

Having separately compiled the code, and written (or copied) a suitable
placement harness, you should bundle them up in a fold, file it and apply the
Make Program utility. This will create an outer fold, marked PROGRAM, into
which the TDS utilities will put their files. . .

Configure: FUNC 2

The configurer checks that a PROGRAM has as a consistent placement
harness, that channels have two ends PLACED correctly. and that the
separately compiled procedures are referenced correctly. It also links in
libraries for extended data types. it then builds a map of the target network,
and checks that it is loadable from the host

Config Information: FUNC 6

This utility analyses the information produced by the configurer and
géenerates a memory map for each processor, a wiring diagram, and a
description of the boot path. The boot path is the route which is used in the
loading of the transputers. This information is put into a fold within the
PROGRAM fold called CONFIG INFO.

Extract: FUNC 3

The extractor takes all the code from a fold set and puts it into a single
fold within the PROGRAM fold together with all the routing and
bootstrapping information necessary to load the Computing Surface.

Load Network: FUNC 4

‘“The loader sends-code to the Computing Surface. The VAL link in the
loader parameter fold should be set to 1. .)

When this point is reached successfully, the message Network ioaded ok will
appear. - By typing FUNC r the terminhal emulator will start to run and the output
from the program will be forwarded to OPS. Typing <ctrl> Z will return control
to OPS. . .

There are listings of error messages and information on how to correct the the
faults associated with them in the TDS User manual.

[6] 6. System Code

The . system code for the MEIKO boards has been bundled into separately
compiled procedures, and to include them in the ‘code the user should attach the
files to a fold, or simpler still, use one of the template procedures. There are 5
such system - procedures, and 4 templates. This section describes these
procedures, and the protocols for using their channels. There are templates for
using the MK009 compute boards, and the MK015 graphics board, and a separately
compiled procedure for the host board (this is only needed when running the
system in 'stand-alone’ mode. -

81

Minimal System code for the Compute Boards.

The-template course:mk009_min.tsr provides a basis for. worker programs
running on the compute - boards. It includes ‘the minimal system -code
m_system:mk009.sys for the MKO09 boards. This procedure runs the system
services on the board, and provides a channel debug that you can use to
write debugging messages to the screen via the supervisor bus. Use the
streams package to write such messages, and ensure that they are
terminated with linefeed or breakch.

Minimal System code for a Master processor.

The transputer in the top left corner of the array in fig.2 is connected to
both the host and the graphics board. It has access via the host board to
the keyboard and screen. The template course:mk009 _full.tsr gives access
. to these channels. The system code is in. m system mk009_full.sys.
Keyboard input is buffered until a return character is detected. Messages
written to the channel screen go there directly, and messages written to
debug go via the supervisor bus.

Full System code for a Master processor.

This procedure gives access to all of the facilities on the host board,
keyboard, screen, files, and mouse. A template can be found in
course:mastercall.tsr and d_lib:mastersys.sys contains the system code.

screen, keyboard and debug: As per minimal procedure above.

~Screen Logging: A log of all messages sent to the channel screen can
be activated by setting the boolean log to TRUE and data is then written to
the file screen.log in the default directory.

Mouse If the boolean mouse is set TRUE then mastersys handles all the
low level calls necessary to run the mouse. A call to mouse.coords in the
user.process procedure causes the mouse cursor to be switched on. When
the buttons on the mouse are .pressed the cursor disappears and
mouse.coords sets the coordinates of the mouse cursor.and the .status (an
integer between 1 and 7 depending upon which. button combination was
pressed). To use the mouse the process gmux must be run concurrently
with mastersys, and the graphics board must be running a command
orientated graphics program such as course:commander.sys.

Files: Mastersys gives access to up to 4 file streams which can be run
concurrently. These streams should be used in_ conjunction with the
procedures in m _files:files.lib or the file 170 routines. There are high level
routines to write streams of characters to a file or to read them back, and to
read/wnte unformatted fixed-length record data files to/from arrays.

92

which raises input to the power power. All three parameters are of type REAL32,
and

RANP(resu1t seed)

which ‘generates pseudo-random. ‘real numbers between 0 and 1 using a linear
congruential algorithm: - 'Here result is of type REAL32 and seed is of type INT.
seed should be given a large initial value.

Notes:

a) You must noet try to call RANP: with- seed declared .as VAL as seed is
updated by the procedure.

b) Be careful to alter the initial value of seed from one run to the next unless
you require the same sequence.

c) Don't call RANP with the same initial value of seed on two or more
) processors, as - they. will then each generate the same sequence of
' pseudo-random numbers.

d) RANP has passed ‘run’, ‘'maximum of 5’ and ‘spectral’ tests of randomness.

A multi-processor linear random number generator is avaulabie in
lib_maths:random.lib--which ‘uses' a: modified multiplier in the linear congruential
algBrithm to ensure that if T processors each generate N numbers then these TxN
numbers are the same as would be generated by a single linear congruential
random number generator called TxN times.

“Thiere is also ‘a. gaussian random-number generator. It uses a polar Box-Muller
algorithm to generate pairs of gaussian—distributed random numbers.

GaussRan(resultl, result?, seed)

It can be found in lib_maths:random.lib: - The type. of resultl and result2 is
REAL32 and seed has type INT. This uses the multi-processor linear ‘random
number generator. It has been tested,:-and gives the correct mean and variance,
and is free of processor-to-processor correlations; nothing else is guaranteed.
The same care should be taken with the initial values of seed.

The names given above are those "for 32-bit procedures.. The - 64~bit
procedures all have names beginning with- D followed by the name given above,
DCOSP(), DSINP(), etc.. The gaussian random number generators are only available
in smgle precusuon : .

B . . .

Details of the |mp|ementat|on of each of the procedures is given in the Occam
Elementary Function Library Manual. .

94

[6] 8. Input Output Procedures

We use a standard set of 1/0 routmes These write data- to, or read. data from
channels as streams of ASCIl characters, communicated as integers. .They can be
found in m_streams:streams. lib on the microVAX, or streams.tsr on the PC+BOO4
systems.

[6] 8.1 Output

These procedures write numbers or stnngs as streams. down channels ,It is
important that you termmate all output .with a linefeed. or a .breakch (see
procedure MuxStream(...)). . e

Writes({ CHAN out, VAL []BYTE str1ng)

Writes() writes literal strings (eg "hel!o”) or BYTE arrays as. a stream of
integers to the channel out, such a routine might typically be-. .

PROC Writes{ CHAN out, VAL []BYTE stmng)
SEQ i=0 FOR SIZE string
out ! INT string[i]

Writen(CHAN out, VAL INT number,)

Writes the integer number as a stream: of ASCIl characters to the channel
out : TN

wr1ted(CHAN out VAL INT number, co1umns) . R

Performs as Writen, but formats the output S0 that co'lumns digits are sent,
the extra being leading spaces. . . .

REAL32wr1’te(CHAN out VAL REAL32 real, VAL INT before, after)

Writes the 32 bit real number veal to the.channel,-with before.places before
the decimal place and after places. .after: . Total - field width is
beforetafter+2. Exponential notation‘is adopted where'necessary

Writef(CHAN out, VAL []BYTE format, VAL INT pl, p2 p3 p4)

Wntef does a formatted wnte of the strlng forma.t Up to four mteger
parameters can be written into the string. Mark the positions of the numbers
by “%N". e.g.

VAL id IS 3:

VAL total IS 333:
SEQ
Writef(out, "Processor ¥N, total is #N*N", id,total,0,0)

U

This will write the string “Processor 3, total is 333" to the channel out.

95

An output channel, for example the screen, can ‘only be used by-one process. at
a time. It cannot be used by (say) three parallel processes simultaneously. If you
want to write output/from parallel processes:to one channel then you must declare
an output:’ ‘chanriel " for: each and jom them wqth a- multlplexer - The . procedure

MuxStream(:..) does this.

MuxStream(VAL []BYTE name, []CHAN in, CHAN out)

Streams written to the channels in are joined and sent down the channel out.
In_order to‘ensure tliat 'the ‘messages don't get jumbled up, the multiplexer locks
on to one ‘thannel until it'is Sent a linefeed or a hreakch. To do this add "*N” to
the end of a string or ensure that linefeed is sent to the output channel (see
below). A consequence of this is that they must be sent! If they are not, the
multiplexers in the system code will hang. The messages are tagged by the string
name, set it to "*#00” if the tags are not required. The procedure terminates when
it receivesan endstreamich from each mput The following example illustrates
correct use of MuxStream(...). - : o :

SEQ T
[2]CHAN to.screen:
PAR
SEQ
... task 1

Writes(to.screen[0], * Task 1 comp1ete*N“)
to.screen[0] ! endstreamch: :

SEQ
' ’writes(‘toiécreen[O];'“ Task 2 starting*N")
... task

Writes(to. screen[l], " Task 2 comp]ete*N")
to.screen|[1] ¥endstreamch ~ :
MuxStream("Jo1ner“ to.screen, screen)

wr1tes(screen, "All done*N")
It will write the'messages: -

GtTel enla{joiner(1)) Task 2 starting: o T
¢ by (joiner(0)):Task 1 complete. -:
“(joiner(1)):Task 2 -complete .=~
All done
to the channel screen although the messages tagged by joiner will not
necessanly amve m th:s order S ‘ : (T . .

[6] 8.2 Input

The following procedures take input in the form of a stream of ASCII characters
and convert to strmgs or numbers as appropnate

ReadL1ne(CHAN in, []BYTE buffer)
Reads characters from thé channel “inuntil either buffer is full, or a linefeed

character is encountered, in which case buffer is padded with byte zeros
("*#00").

96

Readname{ CHAN in, []BYTE name)

Performs as ReadlLine() but also terminates by a space character. It writes
the first word encountered into name.

"Readn(CHAN in, INT number)
Converts a stream.of ASCIl characters terminated as above into an integer.
.REAL32read(: CHAN-in, REAL32:real:) -

‘Builds .a 32-bit real:from-a stream'of‘appropfia'te’characters;’“r“eﬂ‘will' be set

97

7. Notes on Occam 2

These are brlef notes on occam 2, its reserved strmgs and glyphs Fuller

details are given in the sections indicated, and: cross~references at ‘the énd ‘of
those sections. Statements marked [q]are described sufficiently in one line.

[711 1.

[16]
[15]
[8l
[18]
[4]
[47
[4]
[8l
[14]
[14]
[z
[4]
[10]
[4]
[5]
[ri]
[8]
87
[3]
[18]
[17]
[11]
[15]
[12]
[177
[4]
[10]
[10]
[al
[10]
[37
[13]
[o]
[ol
[16]
[
[8]
[1o]
[5]
[7]
[18]

Ve

Reserved Strings

Certain strings in capital letters are reserved, as follows.

AFTER ~ " ‘comparison obei’étoi’, used to cause a delay

ALT - process after first activated channel executes
AND boolean operator .

AT used with PLACE

BYTE an integer between 0 and 255

BOOL boolean type, can be TRUE or FALSE

CHAN definition of a channel

FALSE . boolean constant

FOR used in array segments and in replicators
FROM used in array segments

IF controls conditional execution of processes
INT integer type definition

INT as used in type conversions

INT*= © %% = 16, 32, 64, bits in an integer definition

IS see VAL

MINUS unchecked arithmetic operator

NOT boolean operator

OR boolean operator

PAR the start of a parallel construct

PLACE © - used for memory address placements

PLACED PAR placement of process on a particular processor
PLUS unchecked arithmetic operator: = - .

PRI priority, used as PRI ALT or PRI PAR

PROC . procedure -

PROCESSOR declaresa processor

REAL** %% = 32, .64, bits in real number type defmmon
REAL - " as'used’in type conversions '

REM X REM y gives remainder when X is’ dwrded by y
RETYPES generalised type conversion :

ROUND used for conversions between INT and REAL
SEQ the start of a sequential construct

SIZE gives the size of an array

SKIP process starts, proceeds and terminates

STOP process starts but does not proceed or terminate
TIMER type TIMER used as clocks by processes
TIMES unchecked arithmetic operator

TRUE boolean constant

TRUNC for truncation, not rounding

VAL sets a value, eg VAL INT year IS 365:
WHILE conditional execution loop

WORKSPACE workspace allocation

98

[71 2. Giyphs

[o]
L1
[2]

<[al

[4]
[12]
6]
[10]
[10]
1161
[5]
[10]
[12]
[13]
18]
[8]
[9]
[0]
[0]
[0]
[0]

[711 3.

[

2

R0 s o o o, o e 88003 08 E2 W :|
g R

“valid character within a name

oo {0 131 {{{F for folds - occam programmmg system, OPS

comment
‘separator - - :)
: terminator for any. definition . -
" terminator for a procedure
for channel input and output
arithmetic assignment
~ * [/ v . arithmetic operations
: . same as REM
. for type declarations-in VAL
o - for arithmetic, there:is no precedence
0O for procedure parameters
11 used for array variables
same as AND.
= <> > < >z <= ‘boolean comparison operators
/\ \/ >< 7 << >> bitwise operators '
u for byte strings, eg "hello"
byte ASCli code for a character, eg 'h'
for entering hexadecimal number, eg #A7
*C *N. : reserved strings for formatting

i
r—
@

st S o St

More details ahout reserved strings and glyphs -

S S IR 13

An occam program is constructed in'folds. In the
occam programmmg system a fold is indicated by

- name descmbmg fold .

the words followmg ... are comments, and are
optional. For a filed fold, ... is replaced by ...F
The first word following ...F is taken-as the file *
name Other types of fold are distinguished by
- v+ SC (separately compilable), ... EXE :
{completed procedure) ... PROGRAM ... COMMENT
.~ An open fold then starts with the marker {{{ and
ends with }}}, [{{F denotes a filed fold.

see page 87

On any line of code, or a blank line, a comment
is preceded by -~ thus

-~ this is a comnent

see pages 8,88

99

[3] PAR SEQ ° iy

The indented processes which follow PAR-are done
in parallel, those which follow SEQ in sequence® -~ % =

PAR
SEQ
... fold 1
... fold 2
SEQ _
... TOld 3.
... fold 4

-see pages 35 .
1Z14 BYTE BOOL CHAN | INT REAL - :. ‘
BYTE, BOOL, INT, CHAN, REAL are types. Everything
must be typed, and type declarations last for the

scope of the following process.

INT i, j,BOOLDb, BYTE ¢ , REAL r :
CHAN chanl , chan? : .

terminates each declaration line and attaches
them to the process that follows them.

Types must match in an expression, so type changes
are needed as below with INT i and BYTE b set,

i + ((INT b) + (INT TRUE))
(BYTE FALSE)

is=
b :=
" isee'pages 3,4,7.8
/51 VAL IS ()

VAL causes type definition and sets the vya!ue,v

and would set X below to INT by default unless+

otherwise directed as shown

VAL x IS 7 (BYTE) , VAL INT year IS 365 :

There seem to be flaws in occam'’s razor. There
.are two other ways of defining the value of year

VAL year IS 365 (INT) :
VAL year IS 365 :

Another use of VAL is as an abbreviation which involves

variables on its right hand side which are used once

at execution time to evaluate the expression, and then

should not be changed within its scope. As an example
VAL example IS (a*(b+c)) : -

see pages 8,15

100

V77 S R

Input on a channelis. requested. by ? output by !
In this example the messages are single integers, -

INT 1, J, k ¢

CHAN chanl, chan2 :

SEQ
chanl
chan2

-

i
jsk

see page 2
[77-. WHILE = IF

Assuming X is previously defined the SEQ -
which is within its scope will happen
repeatedly while a condition is fulfilled -

WHILE x=0
SEQ
chanl ? x
chan2 ! x

IF selects the first boolean jn textual order that
is TRUE and starts only the associated process

IF.
bool.1
.. 0NQ
bool.2
...two

.. .If neither bool.1 nor bool.2 is TRUE then
the result is the same as STOP; this can
be remedied with a third option

TRUE .
- SKIP

which then starts SKIP preventing stoppage.
see pages 24,11
J8] TRUE- FALSE AND OR NOT & = < > < >= <=

The following are boolean comparators and
must compare values of the same type

= equal to -

<> not equal to

> greater than

< less than .

= greater than or equal to
= less than or equal to

101

L N

N\
\/

><

<<
>>

[10] REM

The boolean operators and constants may be
used to construct boolean expressions as
follows, where a, b and c are declared BOOL

NOT b = FALSE . .
a=(b=c)AND (aoORc)

TRUE is-the same as BOOL-1 and *
FALSE is the same as BOOL 0.
& is the same as AND.

' see pages 5,10
_\ / >< - << >>

These are bitwise operators, and gperate
on the individual bits in a word. :

bitwise and

bitwise or
bitwise exclusive or
bitwise not

left shift

right shift

‘sege page 10
INT REAL ROUND TRUNC
+ - /() \

As there is no precedence for the arithmetic
operations parentheses must be used to ‘specify
operation.order; X REM y gives remainder when
X is divided by y. All variables must be of the
same type, so if X, y and z are INT, ris REAL
and b is BYTE, the following assignment

x = ((INT b)+(y/z))-((x REM y)*(INT ‘ROUND. r))
involves most of the operators. For corverting .

an integer, say i, use REAL ROUND 1.
TRUNC truncates, \ is the same as REM.

- see pages 2526

[17] PLUS MINUS TIMES

These are unchecked arithmetic operators for addition,
subtraction and multiplication in 2's complement.

The result lies in the range -n to n-1 where.n

is 2**(number of bits in an INT - 1). As these
operators are unchecked they are much faster-for .
small~number manipulation.

102

f12z1 ROC = () 0O

A procedure can take parameters which may be ‘
channels, variables or values. If the value of a variable
parameter is altered.within the body of the PROC, i -
that variable retains its new value after the instance

of the PROC. if the value of a variable parameter .

is not to be altered within the PROC, then it.is more .
efficient to declare it as a VAL, e.g. VAL INT fix. .

PROC ext (INT i VAL INT fix)
SEQ o i R
i =1+ fix
... more code

indicates the end of the PROC and must be indented
to the same level as PROC. Procedures without
parameters must have () -in.their, declaration and,
in their use. The example below shows the use of
a free variable which is available to every PROC.
and process within its scope.

INT free.var :

PROC ext () -- procedure declaration
INT’i: T B
SEQ

i := free.var: .
... more code

SEQ
ext () - -~ procedure use
... more code .

. .. see ,bages 4,23

pal size 1 0 - RS

Square_brackets.are used, for arrays and:their.~ .. o
declarations; SIZE measures the array size.
The following is a declaration of two arrays.

[3JINT i , [3][3]INT j :

The following PROC reads single integers ‘until
the SIZE of the array whose name replaces K . .
in the instance, is reached. The size of k is
undefined in the declaration by the use of [1

PROC read (CHAN in, [1INT k)
SEQ i = 0. FOR (SIZE k)
in ? k[i] .

see pages 16,26

103

[14] FROM. ., FOR.-

These can be used to make array segments B
which are parts of bigger arrays. PRI !
Given the declaration [I0]JINT x : then

\

[x FROM 2 FOR 5]

is a [5]INT.

Smaller arrays of variables, channels or timers -
can.be selected from arrays-of the same type e

SEQ : : o
z := [x FRDM 4 FOR 5]

FOR is also used in replicators,;e.g. where
... €9 is repeated sequentially for i=0,1,2,3

SEQ i = 0 FOR 4
ee. €9

- i sﬂée page 17
[15] ALT PRI ALT PRI PAR :

ALT - The first guard that is ready causes its
process to execute. A guard can be. an .input,
or a construct such as (boolean & input)

INT tag : :
ALT PR S
chanl ? tag
..o first.process .- . .0 s
chan2 ? tag . .- S
e second process -

Nesting or replication is allowed,

PROC join ([ICHAN in, CHAN out) R
INT x: .
ALT i = 0 FOR SIZE in

104

U

[17] PLACED PAR PROCESSOR

Used to distribute processes over processors, e.g.

PLACED. PAR. -
S PROCESSOR. 0. T4 — 1dent1f1er is: 0
i »+«.Channel, p1acement

process.0. (chanl, chan?) R ey

PRDCESSOR 1.7T4.. -- identifier is,l
.. Channel. p1acement ; o
process 1 (chanl chan2)

Th|s declares two processors each with a umque_u,»_ ;

“identifier-and a- specuflcanon of the transputer
type,. T2 or T4. It then gives them a job to do.

[18] PLACE AT WORKSPACE

Allocation of a varlabie channel, timer or array '
e.g. computer, to an. address e.g. Edmburgh

PLACE computer AT denburgh

The allocation of workspace, say [Q]INT: work, for.

a specific process, .say PROC specific, can be done
WORKSPACE work : specific

-and then in conjunction.with PLACE this workspace

can be placed at a specn‘uc memory location, eg
in on chip RAM.- .

see page 32 o

106

see page 32

i

Index

AAP (NTT) 74
abbreviations 15,118
acknowledge 28
AFTER 35

algorithmic parall€lism ~ ¥ B3i°63:

ALICE 79

Alliant FX 78

ALT 12 .
alternative construct <+ -12 =~ ¢

Ametek 77 . Gt

AMT 73 -
arithmetic operators 9
arrays- - 16 -

array segments 17

array types 16

ASCH 31, 40

assignment process 2
attaching to a fold 87"
attaching to a process 5
automaton 41

bandwidth 28
benchmark programs 35
bit operators 10 :
BOOL 7

boolean operators 10
bootstrapping 29, 45 :
buffer 5, 12 T
Butterfly (BBN) 75"
butterfly switch 70

BYTE 7

bytes (of-message) 28
B004 board 30 :

C (paraliel C) 73
call-by-value 24
Cal-Tech hypercube 76
carriage return 31 :
case 7

cellular automata - . 41,58
CHAN 4,8 .
channel 1

CLIP 74

clock 29

comparison’ operators 10
Computing' Surface (CS) 79, 80, 81

. Computing- Surface, use 88
. ‘¢oncurrent” processes - 6 .

concurrency i -'52; 69

" condition * 4 11

configuration '¢-::30, 85

conjugate gradient 62

connecting processes’ - 44
. Connection.Machine .. 73
-constant 8 .

constructs 3, 11
continuations 27

Cray 71

crossbar - 70

Cyber 72

DAP . 72

data flow 78

data types 7

deadlock - 3, 39, 42

delays 34 .
development system (TDS) 90

“disjoint rings 48

display element 82

- Edinburgh CS - 84~

efficiency 52
elementary functions: . 93
Esprit project . 78 -

ETA GF~10:": 72 .7
event parallelism 53

EXE fold 30, 88
FALSE 5
Facom 72

farm (task) 54

files 87, 92

finite differences 61..

floating point 35

flops 35 -
fluid flow 57
fold 30, 86 ;

FPS 164 & T-series 67, 76

FPS 264 71

frequency 29
function library 93
Gauss Seidel 62

geometric decomposition

geometric parallelism - 41,563, 56 -
global memory .- 71"~ I
glyphs 99 : :

graininess 62 -

graphics board
gravitation 64
GRID (GEC) 74

guards 12
hard links 37 .
harness (comms.) = 41

heating system | 13, 25
HEP (Denelcor) 75

Hitac 72

Hoare 1, 81
hypercube 68, 73
IBM 2CAP 75
IBM PC 30, 78
IF 11
indentation 4, 8
initialisation 8

initialise 43
INMOS evaluation module
input/output 95

input process - 2
instance 23, 31
INT 7

interrupt 13

iPSC (Intel) 77

link adaptors 29
links 28

lisp (*lisp) 73 .
load balancing 53
local host board 81
local memory 71
long~range interactions
Mandelbrot set~ 55 .-
mapping 53 -

mass store element 83

master process 38
master processor 92
May 1

message 28

Meiko 81

56

82, 93

63

Meiko Computing -Surface

© 79,80, 81
MicroVAX with OPS 88 e

MIMD 52, 69, 75

MINUS operator - 9~ ...
MITIL 72

modulo-(timers) .34 .. :
modulo operator--— - 8 o

Monarch (BBN) . 75 . oo e
Monte Carlo 60 . - L
Motorola @ 67, 81" . ;o
mouse 92 :
MPP (Goodyear) ¢ 74,
multiplexer- " 21 tnean vts
multi-~user environment 83 . .o
Myrias 4000 76 RET

names 7 3

naming a process 4

NCUBE 77 E

NEC 72

newline 31 . .
notes on occam 2 - . 98 o
occam 1 : o
occam programming system- - 86
operators 9 e
output process 2

output 95

packets 28

PAR construct 5

parallel algorithms 52

parallel architectures 66

parallel construct . 5.
parameters 24

partial diff. equations - 61:
passing conventions 24 .

peak performance 67 .- R
performance estimates 85t
phase 29 : o
pipeline 7, 54

pipeline processors 71.
PLACE...AT 33

PLACED PAR 33

placement 33, 46, 48
PLUS operator 9
power function 94
PRI ALT 22

priority 22

PRI PAR 22

procedure 4, 23,33 .

process 1 R

PROCESSOR 33

program development 89 .
protocol 29, 43 .
pseudo-random numbers "84 . .
quad computing element 82

random numbers 94 .

ray tracing 55
reconfiguration switch = 63
redundancy 69 :

references (applications) - >, .65:;

replicated condition - 20
replicated: PAR 6. e
replicated PLACED PAR 33
replicated SEQ 3
replicators 3, 6, 20
reserved strings 99
reset 29

RETYPES 26

retyping 25

ring 41

ring of 40 transputers 47
ring placement 33, 45
ROUND 26, 37

RP3 (IBM) 75

scope 4, 8, 23

screen output 51

SEQ construct 3 .
Sequent Balance 78 .
SIMD 52, 67,72

SISD A

SIZE 17-

SKIp 2

slaves 38 . :

soft channel 37 .
specifications 7

109

star stencil 62

sTop 3

stopped process 3
string 31

strings {reserved) . 99
supernode 57, 63
synchronisation 2,6
system code 91
systolic 78:

tables 26

tag 31

task farm 54

TDS 90

template 35.
termination 3, 50

test 11

ticks 36

timer 29, 34

TIMES operator 9
toplevel fold 87
topologies 81

torus 45, 68

transputer hardware 28
transputer specification
TRUE 5
TRUNC 26 .
type conversion
types 7
Ultracomputer 75
utility packages 88
VAL 8, 15
vectorising
VLS! 66
WHILE 4
WHILE loop 13
WHILE TRUE 14
WORKSPACE 108

29, 80

25, 28, 37

66, 71

[TEMPLEMAN
\ LIBRARY |

& Y
- /V 5\1%"‘3?)

Presented by:

| Mr Philip Straw

UNIVERSITY OF KENT
AT CANTERBURY =g

